‘壹’ 感染性疾病分子诊断临床意义
感染性疾病:凡是由各种病原体(包括病毒、细菌、支原
体、衣原体等)引起的疾病。如:乙型肝炎(HBV)、
肺结核(TB)、爱滋病(HIV)和人乳头瘤病毒
分子诊断:应用分子生物学方法检测患者体内病原物的基因
或特异基因表达水平的变化而做出诊断的技术。
意义是尽早发现病原物侵染,尽早治疗,对患者的早期治疗和治愈后筛查有重大意义。
‘贰’ 谈谈分子诊断与临床诊断、病理诊断比较有什么优缺点
临床诊断是指临床医生通过问诊和手法检查得到的初步诊断,一般之后临床医生根据需要会让患者进一步做实验室检查(一般在医疗机构的检验科,如抽血、尿液、粪便等)和(或)影像学检查(如:超声、X线摄片、CT、MRI、PET-CT等),然后临床医生会根据这些检查的结果调整先前的诊断,全球范围来看初次诊断的准确率在50%左右,结合实验室检查诊断的准确率可以提升到60%左右,再结合影像学检查结果诊断准确率会提升到70~80%。
病理诊断属于最终诊断,分子诊断是病理诊断的一个方法,不是单独的一种诊断。病理诊断的准确率是99%以上。病理诊断之前的诊断都属于广义上的临床诊断,最终待病理诊断出来后需要统计临床诊断与病理诊断是否符合,称为临床诊断与病理诊断符合率,这个符合率越高说明医疗机构的医疗水平越高。
那为什么病理诊断的准确率为什么如此高呢?因为病理诊断需要采取患者的组织或体液,并通过显微镜观察其中的组织或细胞的形态来诊断疾病,是能够直接观察到病变的本身,当然可能需要借助到免疫组织化学检测、免疫荧光、PCR、FISH、流式细胞检测、超微电镜检查等方法来综合诊断。
那么病理诊断的准确率如何评估?一般通过同行回顾性检查和或患者的长期随访结果来评估。
‘叁’ 什么是分子诊断,通俗易懂,能举个例子最好。
分子诊断:应用分子生物学方法检测患者体内遗传物质的结构或表达水平的变化而做出诊断的技术,称为分子诊断。分子诊断是预测诊断的主要方法,既可以进行个体遗传病的诊断,也可以进行产前诊断。分子诊断的材料包括DNA、RNA和蛋白质。
分子诊断主要是指编码与疾病相关的各种结构蛋白、酶、抗原抗体、免疫活性分子基因的检测。
技术种类分子诊断是当代医学发展的重要前沿领域之一,其核心技术是基因诊断,常规技术包括:
(1)聚合酶链式反应(PCR);
(2)DNA测序(DNA sequencing);
(3)荧光原位杂交技术(FISH);
(4)DNA印迹技术( DNA blotting );
(5)单核苷酸多态性(SNP);
(6)连接酶链反应(LCR);
(7)基因芯片技术(gene chip)。
如果我的答案能够给您一些帮助,希望不要吝啬送上一个“好评”!
‘肆’ 分子诊断和基因治疗应用前景
长期以来,疾病的诊断主要依据病史、症状、体征和各种辅助检查,如血液学、病理学、免疫学、微生物学、寄生虫学乃至物理学检查等。然而,上述检查方法都具有其各自的局限性,使得许多疾病未能被及时准确地诊断,从而延误了治疗良机。因为许多外科疾病在病人出现症状、体征及生化改变之前就已存在相当一段时间,所以人们一直在盼望能找到一种技术,在疾病一旦发生,甚至尚未出现症状、体征及生化改变之前,就能作出诊断;对于某些可能的致病因素,包括食品、水质、环境中存在的病原体,人们也期望能有简单准确的方法及时进行检测。分子生物学技术的发展使人们渴望已久的上述愿望得以实现,这种在分子生物学理论和技术发展基础上建立起来的一门全新的诊断技术就是分子诊断。
生物大分子主要指核酸(DNA和RNA)和蛋白质,通过从分子水平上完成DNA, RNA或蛋白质检测,从而对疾病作出诊断的方法称为分子诊断,目前常用的方法有基因诊断和肿瘤标志物检测两种。
(一)基因诊断 基因诊断是用分子生物学的理论和技术,通过直接探查基因的存在状态或缺陷,从基因结构、定位、复制、转录或翻译水平分析基因的功能,从而对人体状态与疾病作出诊断的方法。基因诊断检测的目标分子是DNA或RNA,反映基因的结构和功能。检测的基因有内源性(即机体自身的基因)和外源性(如病毒、细菌等)两种,前者用于诊断基因有无病变,后者用于诊断有无病原体感染。
基因诊断的意义在于不仅能对某些疾病作出确切诊断,如确定某些遗传病,也能确定基因与疾病有关联的状态,如对疾病的易感性、发病类型和阶段的确定等。就目前已经开展的工作而言,外科领域的遗传性疾病、遗传易感性疾病、多种恶性肿瘤、感染性疾病、器官移植反应等都可以用基因诊断的方法加以诊断。
基因诊断的主要技术有核酸分子杂交、聚合酶链反应和生物芯片技术。
1.核酸分子杂交技术
(1)原理:具有一定互补序列和核昔酸单链在液相或固相中按碱基互补配对原则缔合成异质双链的过程,称为核酸分子杂交。杂交的双方是待测核酸序列和探针序列。应用该技术可对特定DNA或RNA序列进行定性或定量检测。
(2)基因探针及其标记:基因探针是一段与待测DNA或RNA互补的核昔酸序列,可以是DNA或RNA,长度不一,可为完整基因,也可为其中一部分。根据探针的来源和性质分为基因组DNA探针、cDNA探针、RNA探针和人工合成的寡核昔酸探针。作为探针至少必须满足两个条件,一是应为单链(或通过变性形成单链),二是应带有可被示踪和检测的标记。有了合适的探针,就有可能检测出目的基因,观察有无突变,也可根据探针的结合量进行定量检测。选择探针最基本的原则是要有高度特异性,其次也需考虑到制备探针的难易性和检测手段的灵敏性等其他因素。
(3)常用核酸分子杂交技术:①Southern印迹杂交;②Northern印迹杂交;③斑点杂交( dotblotting);④原位杂交(in situ hybridization);⑤夹心杂交(三明治杂交);⑥液相杂交。
2.聚合酶链反应(即lymerase chain reaction,PCR)
(1)原理:PCR是模板DNA,引物和四种脱氧核糖核昔三磷酸(dNTP )在DNA聚合酶作用下发生酶促聚合反应,扩增出所需目的DNA。包括三个基本步骤:双链DNA模板加热变性成单链(变性);在低温下引物与单链DNA互补配对(退火);在适宜温度下TapDNA聚合酶催化引物沿着模板DNA延伸。
(2) PCR引物:PCR技术的特异性取决于引物和模板DNA结合的特异性,引物设计决定PCR反应的成败。由于致病基因是在正常基因序列中发生点突变、片段插人和(或)缺失,基因两翼的DNA序列和正常基因仍然相同,因此根据基因两翼的DNA序列可设计出各20个碱基左右的一对引物。
(3)常用PCR技术:利用PCR技术,在适当条件下扩增目的基因,然后分析PCR产物,便可判断其是否为致病基因及其变异性质。PCR技术具有快速、灵敏、特异性高等特点,为扩大其应用范围,根据需要目前已衍行和发展出以下方法:①常规PCR;②复合PCR;③反转录PCR (RT-PCR);④原位PCR;⑤反向PCR;⑥膜结合PCR;⑦彩色PCR;⑧定量PCR;⑨固着PCR;⑩免疫PCR。
3.生物芯片技术是近年发展起来的分子生物学与微电子技术相结合的核酸分析检测技术。最初的生物芯片技术主要目标是用于DNA序列测定、基因表达谱鉴定和基因突变体检测和分析,所以又称为DNA芯片或基因芯片技术。由于目前这一技术已扩展至免疫反应、受体结合等非核酸领域,出现了蛋白质芯片、免疫芯片、细胞芯片、组织芯片等,所以改称生物芯片技术更符合发展趋势。
1)N八芯片技术的基本原理是将cDNA或寡核昔酸探针以105 ~ 106位点/c耐的密度结合在固相支持物(即芯片)上,每个位点上的cDNA或寡核昔酸探针的顺序是已知的,将该探针与荧光标记的待测样品DNA,RNA或cDNA在芯片上进行杂交,然后用激光共聚焦显微镜对芯片进行扫描,并配合计算机系统对杂交信号作出比较和检测,从而迅速得出所需的信息。由于它携带信息量大、体积小、分析过程自动化、分析过程快及所需样品和试剂量少,因而具有广泛的应用前景、迄今能在临床L用于疾病诊断的芯片主要见于传染性疾病,如丙型肝炎、乙型肝炎及艾滋病等少数几种疾病病毒检测芯片。如果将该技术广泛用于疾病诊断,目前仍存在较大困难。原因在于当前对基因功能的认识仍不充分,而且疾病的发生与很多因素有关,要从大量基因库中筛选出疾病相关的特异性基因制成芯片,难度相当大。
(二)肿瘤标志物检测肿瘤标志物是指肿瘤细胞和组织由于相关基因或异常结构的相关基因的表达所产生的蛋白质和生物活性物质,在正常组织中不产生或产量甚微,而在肿瘤病人组织、体液和排泄物中可检测到。此外,在病人机体中,由于肿瘤组织浸润正常组织,引起机体免疫功能和代谢异常,产生一些生物活性物质和因子,虽然这些物质和因子特异性低,但与肿瘤发生和发展有关,也可用于肿瘤辅助诊断。
1.肿瘤标志物的测定方法
(1)生物化学技术:用于测定由肿瘤细胞产生并分泌到体液中的肿瘤标志物,因其含量与肿瘤活动度有关,所以适用于绝大多数肿瘤病人的监测、疗效和预后观察。
(2)免疫组化技术:可从形态学上详细了解细胞分化、增殖和功能变化的情况,有助于确定肿瘤组织类型、预后和临床特征的分析。
(3)单克隆抗体技术:临床上已用于甲胎蛋白(AFP )、癌胚抗原(CEA),前列腺特异性抗原
2.肿瘤标志物分类
(l)原位性肿瘤相关物质:在同类正常细胞含量甚微,而当细胞癌变时迅速增加,如各种癌细胞内的酶气
(2)异位性肿瘤相关物质:是由恶变的肿瘤细胞产生,不是同类正常细胞的组分,如异位性激素、在肺癌时促肾上腺皮质激素(ACTH)明显升高。
(3)胎盘和胎儿性肿瘤相关物质:癌细胞的特点是无限增殖,并向周围组织侵袭和转移,甚至向远隔组织转移,而胎盘绒毛细胞和胎儿组织细胞也有这样的特点。当胎儿成长后,有一些物质就消失,如果成人组织细胞发生癌变,这类胎盘性或胚胎性物质就会产生或表达癌胚性物质,如AFP、CEA;癌胎盘性物质,如hCG(人绒毛膜促性腺激素)等。
(4)病毒性肿瘤相关物质:凡能在人或动物引起肿瘤或细胞恶性转化的病毒,均称为肿瘤病毒。与肿瘤有关的病毒有HTL-1病毒(成人T细胞白血病)、EB病毒(Burkitt淋巴肉瘤)、HS病毒(宫颈癌与皮肤癌)、HB病毒(肝癌)和人巨细胞病毒等。
(5)癌基因、抑癌基因及其产物:各种致癌因素诱发基因激活和抑癌基因失活及其表达产物异常,是肿瘤发生、发展的重要标志。
需要指出的是,同一肿瘤可含有多种肿瘤标志物,而不同肿瘤或同种肿瘤的不同组织类型除有共同的标志物外,也可有不同的特异性标志物,即某一肿瘤的标志物对另一肿瘤来说不一定是标志物,而某一组织的正常产物对另一组织来源的肿瘤却可成为较好的肿瘤标志物。
检测肿瘤标志物的临床意义在于:早期发现或诊断原发肿瘤;筛查肿瘤高危人群;鉴别肿瘤的良、恶性;判断肿瘤的发展过程;观察肿瘤的治疗效果;预测肿瘤的复发和预后。
http://www.51report.com/html/2005120710018.shtml
‘伍’ 常用的分子生物学检验技术有哪些
分子诊断学的研究范畴包括:利用遗传学、病理学、免疫学、生物化学、基因组学、蛋白质组学和分子生物学的理论和方法探讨疾病发生和发展的分子机制。为整个疾病过程寻求特异的分子诊断指标,以及利用分子生物学技术为这些分子诊断指标建立临床实用的检测方法。
‘陆’ 中国研发出新冠病毒快速核酸检测方法,具体多长时间就能出结果
单独新冠状病毒疾病的核酸检测可以产生约30分钟的结果。在核酸检测过程中,首先需要采集样本,然后保存和运输。从采集样本到结果大约需要6个小时,有时等待时间会更长。进行核酸检测时,应首先处理样本。许多咽拭子样本送到实验室后,需要进行检查和分类。这个连接大约需要3~4个小时。
病原体核酸的一步快速检测。没有核酸提取和纯化,没有PCR扩增;通过处理溶液,病原体被直接切割,目标核酸被释放。靶核酸和探针形成DNA/RNA杂交。荧光粒子识别DNA/RNA杂交的荧光信号,实现对样本中目标核酸的定性判断。该套件可在室温下储存和运输,以最大程度地减少对冷链物流的依赖。该技术在样品检测的及时性、技术平台的可用性、检验检测的方便性、试剂环境的适应性等方面表现良好。
‘柒’ 可用于遗传病诊断的现代分子生物学技术有哪些原理是什么
可用于遗传病诊断的现代分子生物学技术大致可分为三大类
一、细胞水平
细胞水平的遗传病诊断主要有组织、细胞学检查和染色体分析。
如遗传性球形红细胞增多症,是一种显性遗传病。通过对患者的细胞学检查,可以发现红细胞变小,中心色度变深,红细胞自溶可高达15%~45% 。染色体异常的遗传病一般都可以通过对细胞中的染色体分析,作出明确的诊断。
染色体检查也称核型分析是确诊染色体病的主要方法。由于显带技术的广泛开展,已使染色体病的诊断和定位更加准确。各医疗单位对进行核型分析的适应证有不同的规定,随着技术改进和新的染色体病的发现,需要进行染色体检查的适应证将日益增多。性染色体(包括X染色体和Y染色体)的检查对性染色体数量畸变所致疾病的诊断有一定意义。
二、蛋白质水平(也称成分的生化分析)
1、检测基因产物——蛋白质、酶的量和活性;
2、是检测酶促反应底物或产物的变化。
例如以蛋白质分子的结构和功能缺陷为病变基础的单基因病,往往可以对蛋白质分子本身和酶促反应过程中的底物或产物进行定量或定性分析。由于单基因病的种类繁多,加上蛋白质分子或酶促反应的底物或产物的性质各不相同,所以检测方法也不一致。要在某个医疗部门或研究机构同时建立一套完整的单基因病生化检测系统几乎是不可能的。一些国家为此建立了生化检测的协作网络,不同的部门分别从事不同的单基因病生化测定与研究,同时促进部门间的相互协作。用于生化检测的材料主要有血液、活检组织、尿、粪、阴道分泌物、脱落细胞和培养细胞等。不同遗传病的生化检测可用不同的检测材料。
三、基因水平也就是基因诊断
基因水平的遗传病诊断也就是基因诊断(genediagnosis)(又称为DNA诊断),是20世纪70年代在重组DNA技术基础上迅速发展起来的一项应用技术,旨在对患者或收检者的某一特定基因或其转录产物进行分析和检测,从而对相应的遗传病进行诊断。越来越多的证据表明,遗传病的发生不仅与基因(DNA)的结构有关,而且与转录水平或翻译水平上的变化有关。人体基因组的类型早在受精卵开始时就已形成,因此在人体发育的任何时期,只要获得受检者的基因组DNA,应用恰当的DNA分析技术,便能鉴定出缺陷的基因,而不论该基因产物是否已经表达。而且,应用这一方法,不仅能够检测单个碱基置换、缺失和插入等,还能发现DNA的多态现象以及遗传病的异质性。
‘捌’ 如何发挥分子诊断学在检验医学中优势
一. 分子诊断技术和方法和创新,将为临床医学提供更准确的数据和信息
从生物中心法则来看,分子诊断是通过检测基因的结构异常或表达异常,对人体的健康的疾病作出实验诊断,其技术的发展对疾病诊断学的影响是革命性的。众所周知,在评估一项个体的生理或病理状态时,检测DNA可以反映基因的存在和缺陷,分析基因转录或翻译的产物(RNA或蛋白质)则反映基因的表达量,方法的创新是永恒的主题,通过这些基本技术的衍生,组合或联合形成新的分析方法(如基因芯片技术、蛋白芯片技术),提高分子诊断的特异性、敏感性和准确性、为临床医学提供更准确的数据和信息。
二、分子诊断技术的发展和广泛应用,有利于临床医生对疾病进行全面分析
分子诊断技术在检验医学的基础和临床研究中显示出强大的优势,例如,在乙型肝炎的诊断和治疗中,应用DNA定量技术为乙型肝炎的治疗和预后监测提供了重要依据,但近近不无症状乙型肝炎表面抗原携带者及乙型肝炎表面抗阴性者的人群中检出了前C终止密码子变异(G1896A)。研究表明,突变将导致乙型肝炎病毒继续复制,因此这一信息对于临床诊疗十分重要。又如庆大霉素等氨基糖苷类抗生素的毒副作用之一是诱发耳聋,且已证明线粒体DNA中12S rRNA基因A1555G突变和C1494T突变是氨基糖苷灶抗生素诱发非综合征耳聋的分子基础[8,9],即只有带有突变的个体在使用氨基糖抗生素后才发生耳聋,因此,检测12S rRNA基因突变对于指导临床用药具有重要意义。再如,最近我国研制的一种传染性非典型肺炎又称严重急性呼吸综合征(SARS)病毒全基因组芯片,覆盖了SARS病毒基因组的全部序列,旨在检测SARS病毒的同时全面监测该病毒全基因组变化,这种病毒全基因组时代。蛋白芯片[10],特别是免疫芯片(immunochip)等分子诊断学新技术的快速发展,又为肿瘤学(检测多种肿瘤标志物)、内分泌学(检测数种不同激素)、自身免疫诊断(检测各种过敏原)、血液学(输血筛选)及环境微生物监测等提供了新方法和新思路。2000年,Joos等[11]应用免疫微数组实现了18种自身抗原的诊断;2001年,Huang等[12]实现了基于抗体微数组的24种细胞因子的检测,这些新方法和新技术的广泛应用,不仅为临床医学提供更丰富、更有效的数据和信息、而且有利于临床医生对疾病进行全面分析,为实现“疾病以治疗为主转向以预防为产”奠定了基础。
三、尽快制订分子诊断的标准化和监管体系,已迫在眉睫
分子诊断技术虽然具有特异性好、灵敏度高、针对性强、诊断快速等优点,但其存在操作复杂和难经进行临床检验诊断,需要解决的关键是方法的标准化。《The Journal of Molecular Diagnostics》杂志曾在2001年基因技术用于疾病的诊断。FDA将着重检查评估家系遗传分子诊断的方法和实验室资历质等;实验方法的原理、步骤、应用范围报告方式,以及与临床诊断一致性等因素进行证,并在全美建立一个完善的遗传学检验的质量控制体系,规定报告模式和回馈给被检者的信息范围。专家认为,实施这一计划的目的即为了安全、有效、合法地进行分子诊断。我国各实验室建立了很多的分子诊断方法;有的已应用于临床,但往往存在方法不够成熟和稳定性的问题,也缺乏方法学的比较研究,导致检验结果难以为临床提供确切的信息,近年来有关部门已开始对感染疾病的病原微生物核酸的检测进行了管理,但尚未涉及致病基因检测领域,因此,建立分子诊断方法的金标准和标准操作等程序(standard operation procere,SOP),并尽早制定出一个符合中国国情分子诊断监管体系已迫在眉睫。
‘玖’ 分子病理学临床应用主要有哪几个方面
从分子水平阐述基因组、基因、基因转录及其调控,细胞周期和信号转录等分子医学基础;主要疾病的病理变化分子机制及其关键性研究技术;迅速发展的基因诊断、基因治疗和基因工程蛋白质工程新药的研究。
分子病理学与人体解剖病理学及临床病理学、分子生物学、生物化学、蛋白质组学和遗传学,以及有时被视为“交叉”学科等有一定共同点。其本质及主要侧重于疾病的亚微观表现决定了它的多学科性质。
分子病理学包括运用分子和遗传学方法对肿瘤进行诊断和分类,设计和验证对治疗反应和病情发展的预测性生物标记物,不同的基因构成造成的对肿瘤的个人易感性,还有环境因素和生活方式对肿瘤发生的影响。
(9)快速分子病诊断方法扩展阅读
病理学在医学研究中的作用
现代病理学吸收了当今分子生物学的最新研究方法和取得的最新成果,使病理学的观察从器官、细胞水平,深入到亚细胞、蛋白表达及基因的改变。这不仅使病理学的研究更深入一步,同时也使病理学的研究方法渗透到各基础学科、临床医学、预防医学和药学等方面。
如某一基因的改变是否同时伴随蛋白表达及蛋白功能的异常,是否可以发生形态学改变;反之,某种形态上的异常是否出现某个(些)基因的异常或表达的改变。
临床医学中一些症状、体征的解释、新病种的发现和预防以及敏感药物的筛选、新药物的研制和毒副作用等都离不开病理学方面的鉴定和解释。因此,病理学在医学科学研究中也占有重要的地位。