导航:首页 > 方法技巧 > 如何计算平方根的方法

如何计算平方根的方法

发布时间:2022-01-29 21:01:40

如何快速计算平方根

比如136161这个数字,首先找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。

先计算0.5(350+136161/350),结果为369.5。然后再计算0.5(369.5+136161/369.5)得到369.0003,可以发现369.5和369.0003相差无几,并且369²末尾数字为1。断定369²=136161。

一般来说,能够开方开的尽的,用上述方法算一两次基本结果就出来了。再举个例子:计算

(1)如何计算平方根的方法扩展阅读

1、因为每次补数需要补两位,所以被开方数不只一个数位时,要保证补数不能夹着小数点。例如三位数,必须单独用百位进行运算,补数时补上十位和个位的数。

2、每一个过渡数都是由上一个过渡数变化而后,上一个过渡数的个位数乘以2,如果需要进位,则往前面进1,然后个位升十位。以此类推,而个位上补上新的运算数字。

简单地讲,过渡数27,是第一次商的1乘以20,把个位上的0用第二次商的7来换,过渡数343是前两次商的17乘以20=340。

其中个位0用第三次商的3来换,第三个过渡数3462是前三次商173乘以20=3460,把个位0用第四次的商2来换,依次类推。

3、误差值的作用。如果要求精确到更高的小数数位,可以按规则,对误差值继续进行运算。

怎么 求平方根

把369从右往左每两位数分为一节,解3'69.用近似除法的方法。首先从左边看第一节的数3,大于1的平方,小于2的平方,所以商1.3-1=2.然后,把69写在2的后面,即269.把第一个商1乘以20,(20+a)*a.a是第二次的商,积小于等于269.可以商9,即a=9.29*9=261.269-261=8,369的平方根整数部分就是19.如果继续往下求就是小数部分了。可以在8后面补两个0.就是800.把19乘以20得380.(380+b)*b.b是商 的第三个数,乘积小于等于800,可以商2,就是b=2,乘积是764。800-764=36.在36后面再补两个0,即3600.再把前面的商192乘以20,得3840.(3840+c)*c.c是第四个商数。往下的方法同上。可以一直算下去。

㈢ 怎么求数的平方根

步骤:

1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数;

2、根据左边第一段里的数,求得平方根的最高位上的数;

3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数;

4、把求得的最高位数乘以2去试除第一个余数,所得的最大整数作为试商;

5、用商的最高位数的2倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试。

注:一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。

例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。

例如,A=5,,即求

5介于1的3次方;至2的3次方;之间(1的3次方=1,2的3次方=8)

初始值X0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,都可以。例如我们取X0 = 1.9按照公式:

第一步:X1=1.9+(5/1.9^2;-1.9)1/3=1.7。

即5/1.9×1.9=1.3850416,1.3850416-1.9=-0.5149584,-0.5149584×1/3=-0.1716528,1.9+(-0.1716528)=1.7。即取2位数值,,即1.7。

第二步:X2=1.7+(5/1.7^2;-1.7)1/3=1.71。

即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,1.7+0.01=1.71。取3位数,比前面多取一位数。

第三步:X3=1.71+(5/1.71^2;-1.71)1/3=1.709.

第四步:X4=1.709+(5/1.709^2;-1.709)1/3=1.7099

这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动转小;第二步,第四步输入值

偏小,输出值自动转大。即5=1.7099^3;

当然初始值X0也可以取1.1,1.2,1.3,。。。1.8,1.9中的任何一个,都是X1 = 1.7 > 。当然,我们在实际中初始值最好采用中间值,即1.5。 1.5+(5/1.5²-1.5)1/3=1.7。

㈣ 平方根怎么计算

一般学习中数学考试的开方数一般都是整数的平法...非整数根的开方数不会出现在高考以及高考之前的考试中,
整数根的开方数就不说了
计算非整数根的开方数也有很多种类方法...建议直接看第二种,第一种就是爆破...(暴力破解)我更倾向于爆破...因为不用记那么多内容,而且我也不经常去计算这些数
一:
最简单的就是式商,,也就是说大概估算一下这个数的结果,需要非常了解100以内的数的平法值(可以很快计算10000以内的数的开方)比如开方40,根据平时的经验平方数是在6~7之间(6*6=36
7*7=49)并且更接近于6,那么就设定值为6.5
,6.5*6.5
=
42.25大于40---则设定为6.3
,6.3*6.3
=
39.69
---则设定6.35,6.35*6.35
=
40.3225
---则设定6.32

,6.32*6.32
=
39.9424这个数已经很接近40了,可以使用.....
二:
述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除
256,所得的最大整数是
4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.

㈤ 怎样求平方根

1、查平方根表
2、计算器
3、笔算
笔算方法如下:
1.从个位起向左每隔两位为一节,若带有小数从小数点起向右每隔两位一节,用“,”号将各节分开;
2.求不大于左边第一节数的完全平方数,为“商”;
3.从左边第一节数里减去求得的商,在它们的差的右边写上第二节数作为第一个余数;
4.把商乘以20,试除第一个余数,所得的最大整数作试商(如果这个最大整数大于或等于10,就用9或8作试商);
5.用商乘以20加上试商再乘以试商.如果所得的积小于或等于余数,就把这个试商写在商后面,作为新商;如果所得的积大于余数,就把试商逐次减小再试,直到积小于或等于余数为止;
6.用同样的方法,继续求.
上述笔算开方方法是我们大多数人上学时课本附录给出的方法,实际中运算中太麻烦了.我们可以采取下面办法,实际计算中不怕某一步算错!而上面方法就不行.
比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表.
我们计算0.5*(350+136161/350)得到369.5
然后我们再计算0.5*(369.5+136161/369.5)得到369.0003,我们发现369.5和369.0003相差无几,并且,369^2末尾数字为1.我们有理由断定369^2=136161
一般来说能够开方开的尽的,用上述方法算一两次基本结果就出来了.再举个例子:计算469225的平方根.首先我们发现600^2<469225<700^2,我们可以挑选650作为第一次计算的数.即算
0.5*(650+469225/650)得到685.9.而685附近只有685^2末尾数字是5,因此685^2=469225
对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位.
实际中这种算法也是计算机用于开方的算法
希望对你有帮助,祝你开心

㈥ 平方根怎么算

上面我们学习了查表和用计算器求平方根的方法.或许有的同学会问:不用平方根表和计算器,可不可以求出一个数的平方根呢?先一起来研究一下,怎样求 ,这里1156是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3.于是问题的关键在于;怎样求出它的个位数a?为此,我们从a所满足的关系式来进行分析.
根据两数和的平方公式,可以得到
1156=(30+a)2=302+2×30a+a2,
所以 1156-302=2×30a+a2,
即 256=(3×20+a)a,
这就是说, a是这样一个正整数,它与 3×20的和,再乘以它本身,等于256.
为便于求得a,可用下面的竖式来进行计算:

根号上面的数3是平方根的十位数.将 256试除以20×3,得4.由于4与20×3的和64,与4的积等于256,4就是所求的个位数a.竖式中的余数是0,表示开方正好开尽.于是得到
1156=342,


上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是 4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.

如遇开不尽的情况,可根据所要求的精确度求出它的近似值.例如求 的近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到
笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值.
我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学着作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.

参考资料:网络
希望对你能有所帮助。

㈦ 如何计算一个数的平方根

平方根的计算方法计算方法一:我们用a来表示A的平方根,方程x-a=0的解就为A的平方根a。两边平方后有:x*x-2ax+A=0,因为x不等于0,两边除以x有:x-2a+A/x=0、a=(x+A/x)/2所以你只需设置一个约等于(x+A/x)/2的初始值,代入上面公式,可以得到一个更加近似的值。再将它代入,又可以得到一个更加精确的值……依此方法,最后得到一个足够精度的(x+A/x)/2的值即为A的平方根值。真的是这样吗?假设我们代入的值x﹤a
由于这里考虑a﹥0故:x*x﹤a*a
即x﹤A/x(x+A/x)/2﹥(x+x)/2
即(x+A/x)/2>x
即当代入的x﹤a时(x+A/x)/2的值将比x大。同样可以证明当代入的x﹥a时(x+A/x)/2的值将比x小。这样随着计算次数的增加,(x+A/x)/2的值就越来越接近a的值了。如:计算sqrt(5)
设初值为x
=
2
第一次计算:(2+5/2)/2=2.25
第二次计算:(2.25+5/2.25)/2=2.236111
第三次计算:(2.236111+5/2.236111)/2=2.236068
这三步所得的结果和5
的平方根值相差已经小于0.001
了。
计算方法二:我们可以使用二分法来计算平方根。设f(x)=x*x
-
A同样设置a为A的平方根,哪么a就是f(x)=0的根。你可以先找两个正值m,n使f(m)<0,f(n)>0
根据函数的单调性,a就在区间(m,n)间。然后计算(m+n)/2,计算f((m+n)/2),如果它大于零,那么a就在区间(m,(m+n)/2)之间。小于零,就在((m+n)/2,n)之间,如果等于零,那么(m+n)/2当然就是a。这样重复几次,你可以把a存在的范围一步步缩小,在最后足够精确的区间内随便取一个值,它就约等于a。计算方法三:以上的方法都不是很直接,在上世纪80年代的初中数学书上,都还在介绍一种比较直接的计算方法:(1)如求54756的算术平方根时先由个位向左两位两位地定位:定位为5,47,56,接着象一般除法那样列出除式.(2)先从最高位用最大平方数试商:最大平方数不超过5的是2,得商后,除式5-4后得1。把商2写上除式上。(3)加上下一位的数:得147。(4)用20去乘商后去试商147:2×20=40
这40可试商为3,那就把试商的3加上40去除147。得147÷43=3,把3写上除式上。这时147-129=18。(5)加上下一位的数:得1856。(6)用20去乘商后去试商1856:23×20=460
这460可试商为4,那就把试商的4加到460去除1856。得4,把4写上除式上。这时1856-1856=0,无余数啦。(7)这时除式上的商是234,即是54756的平方根。哪么这种计算方法是怎么得来的呢?查找了好久都没有找到答案。静下心来仔细分平方根的计算过程,后来的步骤都有20乘以也有的商再加上预计的商乘上预计的商。设也有的商为a预计的商为b就是(20*a+b)*b即20ab+b*b。而实质上预计的商是平方根中已有的商的后一位数字,平方根实际为10a+b再乘以10的N次方(N为整数),这里我们可以简化为平方根为10a+b(因为乘10的N次方只影响平方的小数点位置,对数字计算没有影响)。这下终于明白了,设a为A的平方根的前n位,b为A的平方根的n位后面的数字,哪么(10a+b)就是A的平方根。有:(10a+b)(10a+b)=100a*a+20ab+b*b=A变形后:(20a+b)b=A-100a*a上面的计算中第一次商2,然后从结果中减4实质就是A-100a*a第二次再预计商3再减去(20*2+3)*3实质就是:A-100a*a-20ab-b*b即:A-(10a+b)(10a+b)此时10a+b看作为新的已有商a,再求下一个b值。这样就可以一位一位地进行平方根的求解了。

㈧ 如何计算平方根的方法

如:67081的平方根手工方式计算
67081的平方根=259
算法1:
假设被开放数为a,如果用sqrt(a)表示根号a 那么((sqrt(x)-sqrt(a/x))^2=0的根就是sqrt(a)
变形得
sqrt(a)=(x+a/x)/2
所以你只需设置一个约等于(x+a/x)/2的初始值,代入上面公式,可以得到一个更加近似的值,再将它代入,就得到一个更加精确的值……依此方法,最后得到一个足够精度的(x+a/x)/2的值。
如:计算sqrt(5)
设初值为2
1)sqrt(5)=(2+5/2)/2=2.25
2)sqrt(5)=(2.25+5/2.25)/2=2.236111
3)sqrt(5)=(2.236111+5/2.236111)/2=2.236068
这三步所得的结果和sqrt(5)相差已经小于0.001
或者可以用二分法:
设f(x)=x^2-a
那么sqrt(a)就是f(x)=0的根。
你可以先找两个正值m,n使f(m)0
根据函数的单调性,sqrt(a)就在区间(m,n)间。
然后计算(m+n)/2,计算f((m+n)/2),如果它大于零,那么sqrt(a)就在区间(m,(m+n)/2)之间。
小于零,就在((m+n)/2,n)之间,如果等于零,那么(m+n)/2当然就是sqrt(a)。这样重复几次,你可以把sqrt(a)存在的范围一步步缩小,在最后足够精确的区间内随便取一个值,它就约等于sqrt(a)。

㈨ 怎样笔算开平方根,简单一点的方法,过程要详细点。

假设被开放数为a,如果用sqrt(a)表示根号a,设置一个约等于(x+a/x)/2的初始值,代入上面公式,可以得到一个更加近似的值,再将它代入,就得到一个更加精确的值。依此方法,最后得到一个足够精度的(x+a/x)/2的值。

阅读全文

与如何计算平方根的方法相关的资料

热点内容
简单不脱妆的方法 浏览:775
红豆杉果实的正确食用方法 浏览:558
血管堵塞治疗新方法 浏览:278
手机除甲醛方法 浏览:14
空地种菜方法视频 浏览:448
什么方法能改变肩宽 浏览:313
青少年腰两侧酸的最快治疗方法 浏览:422
vivo主屏幕时间怎么设置在哪里设置方法 浏览:944
干锅娃娃菜的制作方法和视频 浏览:645
问题的直接表示方法有哪些 浏览:755
桂平酸竹笋的腌制方法视频 浏览:782
手工绣制作方法图片 浏览:622
电箱三相负载计算方法 浏览:744
关于坚持的方法简单 浏览:686
节能有哪些方法物理 浏览:139
vivo手机储存内存变大的方法 浏览:755
快速记住一反三的方法 浏览:969
本田锋范carplay无线连接方法 浏览:82
实验分析方法fmea 浏览:245
小熊奶瓶消毒器使用方法 浏览:961