㈠ 二重积分怎么计算
化为二次积分。
∫∫(x+y)dxdy=∫(0~1)dx∫(1~2) (x+y)dy=∫(0~1) (x+3/2)dx =1/2+3/2=2
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
(1)二重积分的计算方法切面的定义扩展阅读:
几何意义
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积
㈡ 求教二重积分和多重积分的相关内容,比如定义,几何意义和计算方法!
你是数学系的?那讲起来就比较纠结了……可积性神马的
我先试着说说。
二重积分和多重积分两者差不多,形式上是一个数值函数乘以微元(面积或体积),再积分。所以可以用它们求质量,等等。只要是已知被积区域每点对应一个数值,而且需要求整个被积区域的这个数值的和(就是积分),就用二重或多重积分。
计算方法就是拆成几个普通定积分,这需要写出被积区域的范围,比如0<=z<=x+y,0<=y<=x,0<=x<=2,这就是一个区域,一般做多重积分就是要把被积区域化成这种形式,有一个坐标的范围是常数到常数,另一个坐标的范围中只包含前一个坐标和常数,再另一个坐标的范围中只包含常数和前两个坐标……再依次积出来就好了。
其实我个人觉得后边这些二重,多重,曲线,曲面,本质都差不多,都是每点对应一个函数,再求和,所以需要做积分,只不过这个函数可能是数值函数,也可能是向量值函数。当每点对应一个向量值函数时,还要考虑方向对乘积的影响,这些在计算的时候可以反映出来。
要不qq联系吧,有什么具体问题可以解决一下,501699052
㈢ 二重积分的定义
二重积分的定义
设z=f(x,y)为有界闭区域(σ)上的有界函数:
(1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n);
(2)在每一个子域(△σk)上任取一点,作乘积;
(3)把所有这些乘积相加,即作出和数
(4)记子域的最大直径d.如果不论子域怎样划分以及怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作:
即:=
其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积分区域.
㈣ 如何计算双重积分
二重积分化为二次积分计算,二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
㈤ 请帮我解释一下二重积分的定义,和计算方法,尽量用便于理解的方式,谢谢
㈥ 谁能清楚的告诉我二重积分到底怎么算
把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。你可以找一本高等数学书看看。。
你这个题目积分区域中,x,y并不成函数关系,要是积分区域是由比如说1<=x<=2,y=f(x),y=g(x),所围成的话,那么就要先对y积分其中上下限就是f(x),g(x),要看谁的图形在上谁就是上限,这时候的x就当做一个常数来看待(只含有x的项可以像提出常数一样提到积分号外面来)。这个第一次积分得到一个关于x的函数(这个结果是第二次积分的表达式),然后再对x积分,这时候上下限就是2和1。这样就得到积分值了。
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
当被积函数大于零时,二重积分是柱体的体积。
当被积函数小于零时,二重积分是柱体体积负值。
㈦ 二重积分的基础内容是什么计算公式是什么
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广。
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。