导航:首页 > 计算方法 > 导数计算方法与法则整理

导数计算方法与法则整理

发布时间:2022-05-11 00:51:49

① 导数的法则

导数的求导法则

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。



(1)导数计算方法与法则整理扩展阅读:

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

② 导数基本运算法则

导数的基本公式:

y=c(c为常数)y'=0;y=x^ny'"=nx^(n-1);y=a^xy'=a^xIna,y=e^xy'=e^x;y=logaxy'=logae/x,y=Inxy'=1/x;y=sinxy'=cosx;y=cosxy'=-sinx。

导数的运算法则:

①(u±v)'=u'±v';②(uv)'=u'v+uv';③(u/v)'=(u'v-uv')/v^2

导数:



导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

③ 导数的四则运算法则公式是什么

导数公式指的是基本初等函数的导数公式,导数运算法则主要包括四则运算法则、复合函数求导法则(又叫“链式法则”)。


复合函数导数公式


(2)根据“复合函数求导公式”可知,“y对x的导数,等于y对u的导数与u对x的导数的乘积”。



【例】求y=sin(2x)的导数。



解:y=sin(2x)可看成y=sinu与u=2x的复合函数。



因为(sinu)'=cosu,(2x)'=2,



所以,[sin(2x)]'=(sinu)'×(2x)'



=cosu×2=2cosu=2cos(2x)。



五、可导函数在一点处的导数值的物理意义和几何意义



(1)物理意义:可导函数在该点处的瞬时变化率。



(2)几何意义:可导函数在该点处的切线斜率值。



【注】一次函数“kx+b(k≠0)”的导数都等于斜率“k”,即(kx+b)'=k。

④ 导数的计算方法

导数的计算方法主要有极限定义法、公式法以及导数的和、差、乘积、商的求导法则。
基本函数的导数均有计算公式,需要记住,例如:
(kx+b)'=k;
(ax^2+bx+c)=2ax+b;
(a^x)'=a^x*lna;
(x^a)'=ax^(a-1);
(sinx)'=cosx;
(logax)'=1/xlna,等等。

⑤ 导数运算法则公式

1.y=c(c为常数)y'=0;
2.y=x^ny'=nx^(n-1);
3.y=a^xy'=a^xlna;
y=e^xy'=e^x;
4.y=logaxy'=logae/x;
y=lnxy'=1/x;
5.y=sinxy'=cosx;
6.y=cosxy'=-sinx;
7.y=tanxy'=1/cos^2x;
8.y=cotxy'=-1/sin^2x。
导数是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。

⑥ 导数运算法则公式是什么

复合函数求导公式:①设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x),设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x)。

设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果 Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u,有唯一确定的y值与之对应,则变量x与y 之间通过变量u形成的一种函数关系,记为: y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。

减法法则:(f(x)-g(x))'=f'(x)-g'(x)。

加法法则:(f(x)+g(x))'=f'(x)+g'(x)。

乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。

除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。



⑦ 导数的基本公式与运算法则

y=f(x)=c
(c为常数),则f'(x)=0
f(x)=x^n
(n不等于0)
f'(x)=nx^(n-1)
(x^n表示x的n次方)
f(x)=sinx
f'(x)=cosx
f(x)=cosx
f'(x)=-sinx
f(x)=a^x
f'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x
f'(x)=e^x
f(x)=logaX
f'(x)=1/xlna
(a>0且a不等于1,x>0)
f(x)=lnx
f'(x)=1/x
(x>0)
f(x)=tanx
f'(x)=1/cos^2
x
f(x)=cotx
f'(x)=-
1/sin^2
x
导数运算法则如下
(f(x)+/-g(x))'=f'(x)+/-
g'(x)
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2

⑧ 求导公式运算法则

运算法则

减法法则:(f(x)-g(x))'=f'(x)-g'(x)

加法法则:(f(x)+g(x))'=f'(x)+g'(x)

乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2

导数公式

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

⑨ 导数运算法则怎么

计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。

阅读全文

与导数计算方法与法则整理相关的资料

热点内容
番茄灰霉病治疗土方法 浏览:416
oppo手机耳线的包装方法 浏览:705
如何寻找正确的工作方法 浏览:730
羊布病普遍治疗方法 浏览:886
研究方法论是谁写的 浏览:523
婴儿肚子胀怎么办有哪些方法 浏览:329
苹果手机的感应在哪里设置方法 浏览:607
香碗制作方法视频 浏览:93
北京蛋白质组学分析方法 浏览:783
有哪些方法稀释油漆 浏览:184
可以替代焊锡的sma头连接方法 浏览:467
剪辑视频的方法 浏览:593
如何用化学方法鉴别环己烷和苯胺 浏览:539
浙江菜烹饪方法有哪些 浏览:382
星战模拟器怎么找到自己的家正确方法 浏览:767
2020洪灾原因和解决方法 浏览:828
长期失眠睡不着怎么办最好的方法 浏览:112
哪些激励方法可以激励员工 浏览:337
达尔文作用什么方法得出进化论 浏览:633
鼓楼区干货离心机操作方法有哪些 浏览:394