① 求极限的方法归纳,具体点
函数极限的几种常用的求解方法加以归纳。
1.利用极限的描述性定义
极限的描述性定义为:若当自变量的绝对值|x|无限增大时,相应的函数值f(x)无限接近某确定的常数A,则称当x趋向无穷时函数f(x)以A为极限,或f(x)收敛到A,记为
f(x)=A或f(x)→A(x→∞)
利用描述性说明可以容易地估计出一些简单的函数极限,六类基本初等函数的极限也都可以根据描述性定义,结合图像方便地得到。
六类基本初等函数的极限需要学生熟记于心,这是后面求一些复杂函数极限的基础。但其中,有一些极限会比较容易混淆,在应用的时候要引起注意。比如:
lnx=-∞;lnx=+∞;e=+∞;e=0
arctanx=-;arctanx=;arctanx不存在
2.利用极限的四则运算法则
利用极限的四则运算法则可以求一些较为简单的复合函数的极限,但在应用的时候必须满足定理的条件:参加求极限的函数应为有限个,且每个函数的极限都必须存在;考虑商的极限时,还需要求分母的极限不为0。 特殊极限的计算如图:
而其它类型的未定式求极限的关键是,先将它们化为型或型,然后再利用罗必塔法则或其他方法求解。
10.利用级数收敛的必要条件 ,如果级数u收敛,则其一般项u收敛于0,即u=0.
11.分段函数求极限
一般的,分段函数本身不是初等函数,但在其每段子区间上表示为初等函数,可按初等函数讨论极限问题,而对分段函数分界点的极限就必须先讨论左右极限。
② 微积分求极限的方法总结
微积分求极限的方法总结:
1、使用ε-Ν、ε-δ定义进行求极限;套用定义是最简单直接的方法。
2、两边夹法则【夹逼定理】。
3、洛贝达法则;一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
4、递推关系(单调有界、不动点定理)。
5、运用重要极限;根据常用极限进行推导。
6、使用泰勒展开式进行求极限;泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。
7、使用stolz定理进行求极限;Stolz定理是处理数列不定式极限的有力工具,一般用于*/∞型的极限(即分母趋于正无穷大的分式极限,分子趋不趋于无穷大无所谓)、0/0型极限(此时要求分子分母都以0为极限)。
8、化为定积分。
9、此外还有:
积分中值定理(积分第一定理、推广定理、积分第二定理);
托普利兹变换;阿贝尔变换;级数收敛;
上下极限;傅里叶级数;幂级数求和;无穷乘积。
(2)极限的计算方法简单总结扩展阅读:
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。
极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。
所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。
用极限思想解决问题的一般步骤可概括为:
对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想象,因此可以忽略不计。
③ 总结求极限的方法
大学里用到的方法主要有:
1、四则运算法则(包括有理化、约分等简单运算);
2、两个重要极限(第二个重要极限是重点);
3、夹逼准则,单调有界准则;
4、等价无穷小代换(重点);
5、利用导数定义;
6、洛必达法则(重点);
7、泰勒公式(考研数学1需要,其它考试不需要这个方法);
8、定积分定义(考研);
9、利用收敛级数(考研)
每个方法中可能都会有相应的公式,全总结就太多了,你自己去看吧。
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
④ 函数求极限的方法总结
极限思想贯穿于高等数学始终,比如导数的概念、定积分的概念、级数的敛散性等都要用到极限的知识。 可以说有高数的地方就有极限,你说重不重要!
下面我们来讲解一下具体求极限方法
1.利用函数的连续性求函数的极限(直接带入即可)
如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。
2.利用有理化分子或分母求函数的极限
a.若含有,一般利用去根号
b.若含有,一般利用,去根
3.利用两个重要极限求函数的极限
4.利用无穷小的性质求函数的极限
性质1:有界函数与无穷小的乘积是无穷小
性质2:常数与无穷小的乘积是无穷小
性质3:有限个无穷小相加、相减及相乘仍旧无穷小
5.分段函数的极限
求分段函数的极限的充要条件是:
6.利用抓大头准则求函数的极限
其中为非负整数.
7.利用洛必达法则求函数的极限
对于未定式“ ”型,“ ”型的极限计算,洛必达法则是比较简单快捷的方法。
8.利用定积分的定义求函数的极限
利用公式:
以上就求函数极限的方法
⑤ 函数极限的12种计算方法
很多 1.极限定义 2.洛比达 3.泰勒公式 4.定积分定义 5.等价无穷小代换
6.极限的运算法则 7.夹逼准则 8.数列极限法则(单调有界) 9.函数连续性
10.两个重要极限 尼玛想不出来了 笔记本没带 要不然一定说到12个
⑥ 求极限的方法谁给我总结一下。
如图所示:
特别注意:
1、函数在一点有极限与这点是否有定义无关.但是函数在这点的邻域一定要有定义;
2、一般地,函数在一点有极限,是指函数在这点存在双侧极限,且相等,只有区间端点,是单侧极限。
对数法。此法适用于指数函数的极限形式,指数越是复杂的函数,越能体现对数法在求极限中的简便性,计算到最后要注意代回以e为底,不能功亏一篑。
定积分法。此法适用于待求极限的函数为或者可转化为无穷项的和与一个分数单位之积,且这无穷项为等差数列,公差即为那个分数单位。
(6)极限的计算方法简单总结扩展阅读:
极限性质:
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。
但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”
3、保号性:若 (或<0),则对任何 (a<0时则是 ),存在N>0,使n>N时有 (相应的xn<m)。
⑦ 求极限运算方法总结
直接代入法,2.消因子法,3.有理化分子法,4.乘积变比值法,5.乘幂变比值法,6.罗比塔法,
7.不等式夹逼法,8.无穷小代换法,9.泰勒级数法 就这些吧
⑧ 求极限的21个方法总结
重要极限千篇一律取对数类似题库集锦大全。对不起打扰了。整体法等价无穷小逆向思维双向思维。,对数是logarithm的log或者LNX,Lg绝非ig,并非inx,不是logic缩写,更不会是ins,反民科吧。对不起打扰了唉。abs绝对值,sqrt开根号。平方差公式。分子分母有理化。泰勒公式乘法天下第一先写别问唉。可以用省略号代替佩亚诺余项。受教于数字帝国。洛必达法则。不定积分结果不唯一求导验证应该能够提高凑微分的计算能力。
⑨ 求极限的所有方法总结
如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以