A. 2×3行列式的计算方法
2×3行列式的话,那么我们可以直接根据行列式的定义进行计算,因为这个阶数的话,并不是很复杂。
B. 2x3行列式的计算方法
2X3阶行列式?
行列式必须为方阵,其值最后为一个数
2X3阶的肯定是矩阵
每个值都为1的图表
1 1 1
1 1 1
没有行列式!
这就是最终结果.可能的话,可以对其进行初等变换为
1 1 1
0 0 0.
但是不联系使用背景(解线性方程组,求极大无关组)是没什么意义的
C. 三阶行列式计算公式是什么
三阶行列式可用对角线法则:D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。
|a11 a12 a13|=a11a22a33-a11a23a32+a12a23a31-a12a21a33+a13a32a21-a13a22a31,a21 a22 a23。
a31 a32 a33,=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31。
a1*(a1的余子式):
某个数的余子式是指删去那个数所在的行和列后剩下的行列式。
行列式的每一项要求:不同行不同列的数字相乘如选了a1则与其相乘的数只能在2,3行2,3列中找,(即在 b2b3c2c3中找)。
而a1(b2·c3-b3·c2) - a2(b1c3-b3·c1) + a3(b1·c2-b2·c1)是用了行列式展开运算:即行列式等于它第一行的每一个数乘以它的余子式,或等于第一列的每一个数乘以它的余子式,然后按照 + - + - + -......的规律给每一项添加符号之后再做求和计算。
D. 二阶行列式三阶行列式的计算方法
二阶行列式实际上就直接计算
a b
c d=ad -bc
而三阶行列式的计算方法
要么进行初等变换,得到对角线行列式
要么就按照三阶的公式展开为6项
E. 三阶行列式怎么计算
计算方法
对角线法
标准方法是在已给行列式的右边添加已给行列式的第一列、第二列。我们把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线称为次对角线。这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的三个对角线上的数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差。
代数余子式
行列式某元素的余子式:行列式划去该元素所在的行与列的各元素,剩下的元素按原样排列,得到的新行列式.
行列式某元素的代数余子式:行列式某元素的余子式与该元素对应的正负符号的乘积.
即行列式可以按某一行或某一列展开成元素与其对应的代数余子式的乘积之和。
举例
结果为 a1·b2·c3+b1·c2·a3+c1·a2·b3-a3·b2·c1-b3·c2·a1-c3·a2·b1(注意对角线就容易记住了)
这里一共是六项相加减,整理下可以这么记:
a1(b2·c3-b3·c2) - a2(b1·c3-b3·c1) + a3(b1·c2-b2·c1)=
a1(b2·c3-b3·c2) - b1(a2·c3- a3·c2) + c1(a2·b3- a3·b2)
此时可以记住为:
a1*(a1的余子式)-a2*(a2的余子式)+a3*(a3的余子式)=
a1*(a1的余子式)-b1*(b1的余子式)+c1*(c1的余子式)
某个数的余子式是指删去那个数所在的行和列后剩下的行列式。
行列式的每一项要求:不同行不同列的数字相乘
如选了a1则与其相乘的数只能在2,3行2,3列中找,(即在 b2b3c2c3中找)
而a1(b2·c3-b3·c2) - a2(b1c3-b3·c1) + a3(b1·c2-b2·c1)是用了行列式展开运算:即行列式等于它第一行的每一个数乘以它的余子式,或等于第一列的每一个数乘以它的余子式,然后按照 + - + - + -......的规律给每一项添加符号之后再做求和计算。
F. 一个三阶行列式的计算
这题直接把第二行加到第三行就得到第三行的三个数全是a+b+c,与第一行成比例,所以行列式就为0。这应该是最简单的方法
G. 三阶行列式计算是怎么样的
三阶行列式计算方法,如下:
这里一共是六项相加减,整理下可以这么记:
a1(b2·c3-b3·c2) - a2(b1·c3-b3·c1) + a3(b1·c2-b2·c1)=a1(b2·c3-b3·c2) - b1(a2·c3- a3·c2) + c1(a2·b3- a3·b2)。
此时可以记住为:
a1*(a1的余子式)-a2*(a2的余子式)+a3*(a3的余子式)=a1*(a1的余子式)-b1*(b1的余子式)+c1*(c1的余子式)。
三阶行列式的性质。
性质1:行列式与它的转置行列式相等。
性质2:互换行列式的两行(列),行列式变号。
推论:如果行列式有两行(列)完全相同,则此行列式为零。
性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。
推论:行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。
性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。
性质5:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
H. 三阶行列式计算方法
三阶行列式可用对角线法则:
D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。
矩阵A乘矩阵B,得矩阵C,方法是A的第一行元素分别对应乘以B的第一列元素各元素,相加得C11,A的第一行元素对应乘以B的第二行各元素,相加得C12,C的第二行元素为A的第二行元素按上面方法与B相乘所得结果,N阶矩阵都是这样乘,A的列数要与B的行数相等。
三阶行列式性质:
性质1:行列式与它的转置行列式相等。
性质2:互换行列式的两行(列),行列式变号。
推论:如果行列式有两行(列)完全相同,则此行列式为零。
性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。
推论:行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。
性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。
性质5:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
I. 一个三阶行列式的计算
三阶行列式可用对角线法则:
D=a11a22a33+a12a23a31+a13a21a32-a13a22a31-a12a21a33-a11a23a32。
矩阵矩阵由矩阵B,C,是A对应的第一行乘以元素B在元素的第一列,每个元素加C11,A对应的第一行乘以B每个元素的第二行,加C12,C的第二行元素为A的第二行元素按上述方法与B相乘的结果,N阶做这个由矩阵,A的列数必须与B的行数相同。
三阶行列式的性质:
性质1:行列式等于它的转置行列式。
性质2:行列式的两行(列)互换,行列式改变符号。
推论:如果一个行列式的两行(列)相等,则行列式为零。
性质3:行列式的一行(列)的所有元素乘以相同的数字k等于行列式乘以数字k。
推论:行列式的行(列)中所有元素的公因式可以在行列式符号外提到。
性质4:如果元素的两行(列)成比例,行列式等于零。
属性5:行列式的一列(行)的每个元素乘以相同的数字,并将其加到另一列(行)的相应元素上。行列式保持不变。
J. 这个三阶行列式怎么计算
=2*2*2+1*1*1+1*1*1-1*2*1-1*1*2-2*1*1
=4
三阶比较简单,可以直接求,也可以把行列式变成三角行列式求
望采纳,谢谢