导航:首页 > 计算方法 > 遥感影像云量的计算方法

遥感影像云量的计算方法

发布时间:2022-08-07 12:16:26

Ⅰ 遥感图像处理

遥感图像处理是指对遥感探测所获取的图像或资料进行的各种技术处理。处理的目的是使遥感图像或资料更加适用于实际应用。图像处理中,输入的是质量较低的图像,输出的是改善质量后的图像。主要是对原始图像复原的恢复处理和为使图像更加清晰,目标地物更为突出明显,便于信息提取和识别的图像增强处理以及进行自动识别和信息提取的分类处理。从处理方法上,主要有光学处理和计算机数字图像处理。原始图像复原的恢复处理一般由卫星地面站完成,而在现有的条件下自动识别往往并不十分理想,所以这里的遥感图像处理主要是指图像增强处理和信息提取处理。

遥感图像处理的首要任务是对遥感数据的选择及其时相选择,因为遥感数据及其时相往往对影像的判别产生直接的影响;其次是根据任务和目标进行波段组合的优化选择;最后是确定遥感图像处理和信息提取方法,方法选择得当,就可以少走弯路或不走弯路,方法选择不当,信息提取就如同大海捞针一样难。

本次遥感图像处理的软件主要运用了加拿大PCI公司开发的用于图像处理、几何制图、GIS、雷达数据分析以及资源管理和环境监测的多功能软件系统PCI和自主开发的TM找矿弱信息提取系统等软件。

本节主要针对项目工作区范围的遥感影像的计算机数字图像增强处理的基本原理和方法作简要介绍,不对遥感图像预处理(系统误差校正、大气校正、几何图像校正)进行说明。

7.1.1 TM遥感图像的选取

由于陆地资源卫星TM信息源在资源综合调查中,具有明显的技术与经济优势。表现在进行各种处理(数字、光学)潜力大,波段组合能力强,成图几何精度和分类几何精度高,地学综合信息丰富,价格适中,所以就性能价格比而言,以TM遥感信息源为优。同时也对部分区域的SPOT(10 m、5 m)图像进行了处理分析。

本地区的气候是属于暖温带大陆性季风型,一年中四季变化比较明显,夏季植被覆盖率较高,不利于对矿产地质综合信息的研究,同时植被覆盖率高也不利于对遥感图像的计算机处理和信息提取。因此,对本研究工作来说,首先要避开夏季,其次要考虑地面裸露程度及与遥感图像时相的一致性,一般应选择在4月或10月,因为这时植被刚刚出露或者已经枯萎,4月份山区作物种类较单调,甚至还没有作物萌芽,而10月份秋季作物已经收割,植被多已枯萎,地面覆盖相对较低,为此我们选择了1998年4月和2000年10月的影像资料作为本次图像处理的重点。

7.1.2 遥感(RS)图像处理的过程分析

遥感数字图像处理的过程就是几何、辐射校正、信息定量化、信息复合、图像增强、信息特征提取、图像分类等一系列图像处理和分析技术研究,为各类型区的遥感综合调查提供优质图像的过程。

数字遥感图像处理的一般过程为:

创新思维与找矿实践

遥感图像预处理包括了遥感图像辐射校正和几何校正两大部分。鉴于预处理是遥感图像处理的公共部分,基于篇幅所限不再赘述。

7.1.3 遥感图像增强处理方法研究和选择

图像增强是改善图像视觉效果的处理。当分析遥感图像时,为了使分析者能容易确切地识别图像内容,必须按照分析目的对图像数据进行加工,目的是提高图像的可判读性。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。

遥感图像增强的实质就是把图像灰度的微小差异,人为地予以扩大(或者赋予不同的色彩),目的在于提高人们对图像的分析判断能力。由于对其增强效果缺乏一个统一的评价标准,因此,须结合具体增强要求,选择图像增强的方法,并通过反复试验、调整和观察,达到满意的增强效果。

虽然遥感图像处理方法多种多样,我们在工作中也试验了多种方法,经过筛选和分析研究,结合本次工作实际情况,主要应用了以下几种方法:

7.1.3.1 比值处理

比值处理采用高质量比值功能,使比值图像得到拉伸,有效地消除了地形影响,使阴影区的结构得到显示。处理出来的图像色彩丰富,既保留了原有地貌特征,又突出了线环构造,为隐伏岩体和半隐伏岩体的研究提供了更为直观可靠的资料,立体感得到增强,阴影区结构清楚。

同一地区不同波段(两个波段或几个波段组合)对应像元亮度值相除,用所得新值构成一幅比值增强图像。目的是扩大相邻两个像元的差别,框图如下:

创新思维与找矿实践

在一张比值图像上,灰阶中最黑和最白的色调代表两个多光谱波段间光谱反射率的最大差异值。最黑的色调代表比值的分母大于分子。反之,最白的色调代表分子大于分母。

基本比值:两个波段的数值相比

公式中:a、b为调节参数;

设a=1,b=0

则每一条斜线的斜率就是一个亮度值。一个点的比值相当于该点和原点的连线与水平轴夹角的正切(比值法的涵义如图7-1)。

图7-1 比值法涵义

作用:① 扩大不同地物亮度值的微小差别;② 消除地形影响(比如阴坡和阳坡的影响);③ 识别和区分蚀变矿物。

下面是本次工作中主要运用的比值和目的:

TM3/1识别褐铁矿化,在图像上呈亮色调;赤铁矿化,在图像上呈暗色调。

TM5/4区分植被与无植被覆盖的土壤和岩石,植被发育区呈暗色调。

区分不同种类的特征矿物:

TM5/4≥1.0云母和黄铁矿;

TM5/4≤1.0明矾石和石膏;

TM5/4≈1.0方解石和粘土矿;

TM7/4≥1.0云母;

TM7/4≤1.0明矾石和石膏;

TM4/3,识别植被和褐铁矿化岩石,植被发育区呈亮色调,褐铁矿化岩石呈暗色调;

TM5/7,识别含羟基矿物、硫酸盐和碳酸盐岩的含水化合物,由于这些矿物在2.2(TM7)处的吸收谷,其TM5/7值很大,在图像上呈亮色调。但植被的TM5/7值也很大,需要用其他方法加以区分。

比值可分为大于1和小于1两大部分,反映波谱特征差别的强弱是不一致的,即在大于1的部分反差较大,在小于1的部分反差很小,实际上是被压缩了。在比值处理过程中,通过自主研发的TM弱信息提取系统的处理,在该系统中增加了一个拟合放大的功能,可以根据需要进行不同比例的放大。基本上解决了比值结果有可能被压缩这一问题。

7.1.3.2 主成分分析处理

主成分分析(或称为主组分变换,数学上称之为K-L变换)是遥感图像增强和信息提取中用得最多的线性变换,它是在统计基础上的多维正交线性变换,是对原波段图像进行波谱信息的线性投影变换。在尽可能不减少信息量的前提下,将原图像的高维多光谱空间的像元亮度值投影到新的低维空间,减少特征空间维数,达到数据压缩、提高信噪比、提取相关信息、降维处理和提取原图像特征信息的目的,并能有效地提取影像信息。它可使原来多波段图像经变换后提供出一组不相关的图像变量,最前面的主分量具有较大的方差,包含了原始影像的主要信息,所以要集中表达信息,突出图像的某些细部特征,可采用主分量变换来完成。

对工作区的遥感图像的6个波段TM1、TM2、TM3、TM4、TM5、TM7进行了主成分分析,以主成分分析后的第一分量为基础解译图像,参考其他分量图像进行遥感解译。

7.1.3.3 反差扩展(主要是线性拉伸)

反差扩展是一种通过拉伸或扩展图像的亮度数据分布,使之占满整个动态范围(0~255),以达到扩大地物之间亮度差异,分出更多亮度等级的一种处理技术。

例如:原始的一幅TM图像,亮度范围集中在10~100范围内,我们可以将其扩展到0~255,扩大了相邻亮度值之间的差别,提高了分辨能力(但不能增加亮度等级)(图7-2)。

图7-2 线性增强前后对比

反差扩展的原理是:在反差扩展中,输出的像元值y,是输入的像元值x的函数:y=f(x)0<y<255

这个函数可以是线性的,也可是非线性的。本次主要应用的是普通线性扩展。如果用直线方程来扩展图像,就是y=f(x)

斜率=45°,即y=x,无变化;

斜率<45°,如 y=1/2x,压缩;

斜率>45°,如 y=2x,扩展。

创新思维与找矿实践

dmin,dmax分别代表输入的最小和最大值。

①原来图像的最小和最大值。

②人为规定最小和最大值。

此时,

这就是说把区间〔a,b〕以外的像元值分别压缩为0及255。

③给定要舍掉的像元数百分比,小于此百分数的值均舍去,由程序来确定dmax和dmin

反差处理贯穿于整个图像处理过程。根据实际情况对不同的处理结果均进行了反差处理(主要是普通线性拉伸处理)。

7.1.3.4 反色(又称为反相)处理

反色就是形成底片效果。反色有时是很有用的。反色的实际含义是将R、G、B值反转。若颜色的量化级别是256,则新图中的R、G、B值为255减去原图的R、G、B值。这里针对的是所有图,包括真彩图、带调色板的彩色图(又称为伪彩色图)和灰度图。

本次反色处理主要是针对主成分分析的几个分量进行的。主成分分析结果仍然是灰度图,而灰度图又是一种特殊的伪彩色图,只不过调色板中的R、G、B值都是一样的。由于位图中的数据只是对应调色板中的一个索引值,所以只需要将调色板中的颜色反转,形成新调色板,而位图数据不用动,就能够实现反转。由于主成分分析结果的6个分量中,每个分量图像如果不进行反差处理(主要是线性拉伸),图像均较暗,根据处理后的结果显示,水体为黑色,其灰度值大约在0~20,而山体的灰度值多在50~100之间,尽管对其进行了拉伸处理,仍不理想。为了比较准确地区分图像,提高判读解译的准确性,降低解译时间消耗,所以对反差处理后的结果又进行了反色处理。

7.1.4 信息提取处理

信息提取主要是针对影像的光谱特征、空间(几何)特征和纹理特征的提取,它是图像增强处理后的对图像的继续处理。

(1)光谱特征:可提取颜色或灰度或波段间的亮度比等目标物的光谱特征,例如Landsat7有7个波段,根据某类地物的光谱特征,采用特定的比值可将其突出出来。

(2)空间(几何)特征:把目标物的形状、大小、或者边缘,线性构造等几何性特征提取出来,例如把区域断层明显突出出来。

(3)纹理特征:是指周期性图案及区域均匀性等有关纹理的特征。根据构成图案的要素形状、分布密度、方向性等纹理进行图像特征提取的处理叫做纹理分析。

本次工作区的遥感影像信息特征提取主要是在PCI软件、TM弱信息提取系统(自主开发)等软件中进行初步工作,最后通过目视解译和计算机自动解译相结合来完成的。

Ⅱ 遥感图像去云的一般采用什么做法

一般采取多时相互补影像来做去云,假设地物变化忽略不计,仅考虑辐射差异进行重建,最简单的方法就是时相平均/替代/线性回归,但这类方法通常效果有限,尤其是大面积厚云去除和复杂场景重建。

按云的类型可以区分为薄云和厚云。薄云去除类似自然图像的去雾,比如凯明大佬的暗通道先验,也可以考虑不同波段的光谱差异性来做。

厚云去除就比较难了,其下方的地表遮挡信息完全无效,薄云的方法此时就没卵用了。

几个去薄云的方法:

1、同态滤波:利用傅里叶变换,然后滤掉低频的云成分。

2、小波分析:利用小波分解到多尺度,然后去掉低频的云成分。

3、TC变换:针对Landsat系列卫星的一种正交变换,转换后的4th分量被认为是云分量。

4、HOT变换:定义一条晴空线,然后云的影响会使像元值偏离这条直线,计算每个像素偏离的距离就可以得到一个类云的图像,然后利用暗像元法或者直方图匹配等方法去除。基于这个原理这个有人做了个插件haze tool,可以在envi上用。

5、RTM:利用1.38um的波段探测到的卷云信息去除其他波段中的云。

同态滤波

同态滤波是运用照度和反射率模型对遥感图像进行滤波处理,常常应用于揭示阴影区域的细节特征。

该方法的基本原理是:减少低频,增加高频,从而锐化图像边缘或细节特征的图像增强方法,一幅影像f(x,y)能被表达成照度分量和反射分量两部分的乘积:f(x,y)=i(x,y)*r(x,y)式中i(x,y) 为照度分量,r(x,y) 为反射分量。

Ⅲ 遥感数据融合详细步骤,急急急,做论文的!!!!

一、资料的收集与分析 遥感制图所需的资料范围较广,一般需要收集如下资料
1、编制地区的普通地图 、 (1)比例尺最好与成图比例尺一致或稍大于成图比例尺 (2)选用面积变形较小的地图投影
2、遥感资料 后几年的影像 在选择遥感图像时,要遵循以下几个原则:
(1)空间分辨率及制图比例尺的选择 空间分辨率指像素 代表的地面范围的大小,即扫描仪的瞬时视场或地面物体能分辨的最小单元。 空间分辨率指像素所代表的地面范围的大小,即扫描仪的瞬时视场或地面物体能分辨的最小单元的地面范围的大小 由于遥感制图是利用遥感图像来提取专题制图信息的,因此在选择遥感图像空间分辨率时要考虑以 下两点要素:一是判读目标的最小尺寸,二是地图成图比例尺。遥感图像的空间分辨率与地图比例尺有 密切关系:空间分辨率越高图像可放大的倍数越大,地图的成图比例尺也越大。 遥感图像的比例尺应与成图比例尺一致或象片比例尺稍大于成图比例尺,这样可以避免成图比例尺 大尺度变换的繁琐技术问题。但对于专题要素的判读、分类、描绘来说,往往要选择大于地图比例尺的 象片为宜。
(2)波谱分辨率与波段的选择 波谱分辨率是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。间隔越小,分辨率越高。 波谱分辨率是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。间隔越小,分辨率越高。 是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔 波谱分辨率,是由传感器所使用的波段数目,也就是选择的通道数,以及波段的波长和宽度所决定。各 遥感器波普分辨率在设计时, 都是有针对性的, 多波段的传感器提供了空间环境不同的信息。 TM 为例: 以 TM1 蓝波段:对叶绿素和夜色素浓度敏感,用于区分土壤与植被、落叶林与针叶林、近海水域制图。 TM2 绿波段:对无病害植物叶绿素反射敏感 TM3 红波段:对叶绿素吸收敏感,用于区分植物种类。 TM4 近红外波段:对无病害植物近红外反射敏感,用于生物量测定及水域判别。 TM5 中红外波段:对植物含水量和云的不同反射敏感,可判断含水量和雪、云。 TM6 远红外波段:作温度图,植物热强度测量 TM 图象的性质 波段 1 2 3 4 5 6 7 光谱范围 (微米) 0.45—0.52 0.52—0.60 0.63—0.69 0.76—0.90 1.55—1.75 10.4—12.5 2.08—2.35 光谱性质 蓝 绿 红 近红外 中(近)红外 热(中)红外 中红外 地面分辨 率(米) 30 30 30 30 30 120 30 主 要 应 用 地壤与植被分类 健康植物的绿色反射率 探测不同植物的叶绿素吸收 生物量测量,水体制图 植物湿度测量,区分云与雪 植物热强度测量,其它热制图 水热法制图,地质采矿 包括航空象片、卫星象片及它们的底片和磁带、航空象片镶辑图、若为动态监测还需要前
(3)时间分辨率与时相的选择 遥感图像是某一瞬间地面实况的记录,而地理现象是变化、发展的。因此,在一系列按时间序列成像的 遥感图像 多时相遥感图像中,必然存在着最能揭示地理现象本质的“最佳时相”图像 把传感器对同一目标进行重复探测时, 相邻两次探测的时间间隔称为遥感图像的时间分辨率。 Landsat 如 1、2、3 的图像最高时间分辨率为 18 天,Landsat4、5、7 为 16 天,SPOT-4 为 26 天,而静止气象卫星的 时间分辨率仅为半小时。 遥感图像的时间分辨率对动态监测尤为重要。如:天气预报、灾害监测等需要短周期的时间分辨率,因 此常以“小时”为单位。植物、作物的长势监测、估产等需要用“旬”或“日”为单位。 显然只有气象卫星的图像信息才能满足这种要求;研究植被的季相节律、农作物的长势,目前以选择 landsat-TM 或 SPOT 遥感信息为宜。
3、其他资料 土地现状图、土地利用报告 、编图地区的统计资料、政府文件、地方志等
二、确立专题要素的分类系统
三、遥感图像处理
1、遥感图像处理方法的选择 、
(1)光学处理法 常用的方法有:假彩色合成(加色法、减色法)、等密度分割、图像相关掩膜。
(2)数字图像校正 方法:辐射校正、几何校正
(3)数字图像增强的方法:
A. 对比度变换
B.空间滤波:是指在图像空间或空间频率对输入图像应用若干滤波函数而获得改进的输出图像的技术。 空间滤波 常用的空间滤波的方法有:平滑和锐化。 :平滑和锐化 平滑:图像中出现某些亮度变化过大的区域,或出现不该有的亮点(“噪声”)时,采用平滑的方法可以减小变化, 平滑 使亮度平缓或去掉不必要的“噪声”点。具体方法有:均值平滑、中值滤波 均值平滑、 均值平滑 锐化:为了突出图像的边缘、线状目标或某些亮度变化率大的部分,可采用锐化方法。常用的几种方法:罗伯特 锐化 梯度、索伯尔梯度、拉普拉斯算法、定向检测
C.彩色变换 彩色变换就是将黑白图像转换成彩色图像的方法。主用的方法有单波段彩色变换、多波段彩色变换、 彩色变换: 彩色变换 HLS 变换等。
D.图像运算
E.多光谱变换 多光谱变换: 多光谱变换 两幅或多幅单波段影像,完成空间配准后,通过一系列运算,可以实现图像增强,达到提取某些信息 或去掉某些不必要信息的目的。方法:差值运算、比值运算 多光谱变换就是指用某种变换把信息集中于较少(一般为 3 个)波段内。常用的方法有:主成分分 主成分分 变换) 缨帽变换( 、缨帽变换 变换) 、沃尔什—哈达玛变换、傅立叶变换、植被指数变换、斜变 析(K-L 变换) 缨帽变换(K-T 变换) 、 换、余弦变换等等。 主成分分析( 变换) 主成分分析(K-L 变换)的主要特性有二: a.能够把原来多个波段中的有用信息尽量集中到数目尽可能少的新的组分图像中。 b.还能够使新的组分图像中的组分之间互不相关,也就是说各个组分包含的信息内容是不重叠的。 K-L 变换的缺点 的缺点是不能排除无用以至有碍的噪声和干扰因素。 的缺点 缨帽变换( 变换) :它是 Kauth 和 Thomas(1976 年)通过分析 MSS 图像反映农作物或植被生长过程的数据结 缨帽变换(K-T 变换) 构后,提出的正交线性变换。 K-T 变换的特点:a.能够把原来多个波段中的有用信息压缩到较少的新的波段内。 b.要求新波段正交或近似正交。 c.分离或削弱无用的干扰因素。 (4)多源信息复合 )

四、遥感图像的判读
1、遥感图像目视判读 遥感图像的判读标志:
遥感图像的判读标志:是指图像上反映出的地物和现象的图像特征,是以深浅不同的黑白色调(灰阶) 或不同的色彩构成的各种各样图形现象出来的。 遥感图像的判读标志可概括为:颜色、形状、空间位置 :颜色、形状、 颜色——色调、 颜色、 颜色——色调、 颜色、阴影 ——色调 形状——形状、纹理、 大小 、 形状 、 位置——位置、图型、相关布局 位置
2、目视解译的方法
(1)直接判读法(2)对比分析法 (3)信息复合法(4)综合推理法(5)地理相关分析法 (1)直接判读法:是根据遥感影像目视判读直接标志,直接确定目标地物属性与范围的一种方法。 直接判读法 例如,在可见光黑白像片上,水体对光线的吸收率强,反射率低,水体呈现灰黑到黑色,根据色调可以从影像 上直接判读出水体,根据水体的形状则可以直接分辨出水体是河流,或者是湖泊。在 MSS4、5、7 三波段假彩色影 像上,植被颜色为红色,根据地物颜色色调,可以直接区别植物与背景。 (2)对比分析法 此方法包括同类地物对比分析法、空间对比分析法和时相动态对比法。 A.同类地物对比分析法 同类地物对比分析法是在同一景遥感影像上,由已知地物推出未知目标地物的方法。 同类地物对比分析法 B.空间对比分析法 空间对比分析法是根据待判读区域的特点,选择另一个熟悉的与遥感图像区域特征类似的影像,将两个影像相互 空间对比分析法 对比分析,由已知影像为依据判读未知影像的一种方法。 C.时相动态对比法,是利用同一地区不同时间成像的遥感影像加以对比分析,了解同一目标地物动态变化的一种解 .时相动态对比法 译方法。 (3)信息复合法:利用透明专题图或者透明地形图与遥感图像重合,根据专题图或者地形图提供的多种辅助信息, 信息复合法 识别遥感图像上目标地物的方法。 (4)综合推理法:综合考虑遥感图像多种解译特征,结合生活常识,分析、推断某种目标地物的方法。 综合推理法 (5)地理相关分析法:根据地理环境中各种地理要素之间的相互依存,相互制约的关系,借助专业知识,分析推断 地理相关分析法 某种地理要素性质、类型、状况与分布的方法。

3、目视解译的基本步骤 (1)准备工作 •选择合适波段与恰当时相的遥感影像 •相关专题地图的准备 •工具材料准备 •熟悉地理概况 •确定专题分类系统 (2)室内初步解译与判读区的野外考察 室内建立初步判读标志 •初步解译的主要任务是掌握解译区域特点,确立典型解译样区,建立目视解译标志,探索解译方法,为全面解译 奠定基础。 •在室内初步解译的工作重点是建立影像解译标准,为了保证解译标志的正确性和可靠性,必须进行解译区的野外 调查。野外调查之前,需要制定野外调查方案与调查路线。 野外考察验正判读标志 在野外调查中,为了建立研究区的判读标志,必须做大量认真细致的工作,填写各种地物的判读标志登记表, 以作为建立地区性的判读标志的依据。在此基础上,制订出影像判读的专题分类系统,根据目标地物与影像特征之 间的关系,通过影像反复判读和野外对比检验,建立遥感影像判读标志。 (3)室内详细判读 在详细判读过程中,要及时将解译中出现的疑难点、边界不清楚的地方和有待验证的问题详细记录下来,留待野 外验证与补判阶段解决。 (4)野外验证与补判 野外验证指再次到遥感影像判读区去实地核实解译的结果。主要内容包括两方面: •检验专题解译中图斑的内容是否正确。 •验证图斑界线是否定位准确,并根据野外实际考察情况修正目标地物的分布界线。 (5)目视解译成果的转绘与制图 遥感图像目视判读成果,一般以专题图或遥感影像图的形式表现出来。

五、遥感图像计算机解译
图像分类方法 监督分类
1.(1) 最小距离法 最小距离法(minimum distance classifier) •以特征空间中的距离作为像素分类的依据。 •在遥感图象上对每一类别选取一个具有代表意义的统计特征量;计算待分像元与已知类别之间的距离,将其归 属于距离最小的一类。 •最小距离分类法原理简单,分类精度不很高,但计算速度快,它可以在快速浏览分类概况中使用。
(2) 分级切割分类法 分级切割分类法(multi-level slice classifier) 多级切割法(multi-level slice classifier)是根据设定在各轴上的值域分割多维特征空间的分类方法。
(3) 特征曲线窗口法 •特征曲线窗口法分类的依据是:相同的地物在相同的地域环境及成像条件下,其特征曲线是相同或相近的,而不 同地物的特征曲线差别明显。 •特征曲线窗口法分类的效果取决于特征参数的选择和窗口大小。各特征参数窗口大小的选择可以不同,它要根据 地物在各特征参数空间里的分布情况而定。
(4) 最大似然法 最大似然法(maximum likelihood classifier) •地物图象可以以其光谱特征向量 X 作为亮度在光谱特征空间中找到一个相应的特征点,来自于同类地物的各种特 征点在特征空间中将形成一种属于某种概率分布的集群。 • 判别某一特征点类属的合理途径是对其落进不同类别集群中的条件概率进行比较, 相应于条件概率大的那个类别, 应是该特征点的归属。

2、监督分类步骤
(1)选择有代表性的训练场,确定各类地物的范围界线。
(2)对各类地物光谱值统计,提取各地物的数值特征。
(3)确定分类判别函数:最小距离法、马氏距离法等。
(4)分类参数、阈值的确定;各类地物像元数值的分布都围绕一个中心特征值,散布在空间的一定范围,因此需要 给出各类地物类型阈值,限定分布范围,构成分类器。
(5)分类:利用分类器分类。
(6)检验:对初步分类结果精度进行检验(分类精度、面积精度、位置精度等) 对分类器进行调整。
(7)待分类影象分类。
(8)分类结果的矢量化。
非监督分类 前提:遥感影象上同类物体在同样条件下具有相同的光谱信息特征,依靠影象上不同类地物光谱信息(或纹理信息) 进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的个别类进行确认。 非监督分类方法是在没有先验类别(训练区)作为样本的条件下,即事先不知道类别特征,主要根据像元间相似度 非监督分类方法 的大小进行归类合并(将相似度大的像元归为一类)的方法。主要有: (1)分级集群法(2)动态聚类法
第二节 从影像生成专题地图
一、目视解释的专题地图
(1)影像预处理 包括遥感数据的图像校正、图像增强,有时还需要实验室提供监督或非监督分类的图像。
(2)目视解译 经过建立影像判读标志,野外判读,室内解译,得到绘有图斑的专题解译原图。
(3)地图概括 按比例尺及分类的要求,进行专题解译原图的概括。专题地图需要正规的地理底图,所以地图概括的同时也进行图斑向地理底图的转绘。
(4)地图整饰 在转绘完专题图斑的地理底图上进行专题地图的整饰工作。
二、数字图像处理的专题制图
(1)影像预处理 同目视解译类似,影响经过图像校正、图像增强,得到供计算机分类用的遥感影像数据。
(2)按专题要求进行影像分类。
(3)专题类别的地图概括 包括在预处理中消除影像的孤立点,依成图比例尺对图斑尺寸的限制进行栅格影像的概括。
(4)图斑的栅格/矢量变换。
(5)与地理底图叠加,生成专题地图。
三、遥感系列制图
系列地图,简单说就是在内容上和时间上有关联的一组地图。我们所讨论的系列地图,是指根据共同的制图目的,利用同一的制图信息源,按照统一的设计原则,成套编制的遥感专题地图。
地理底图的编制程序:采用常规的方法编制地理底图时,首先选择制图范围内相应比例尺的地形图,进行展点、镶嵌、照像,制成地图薄膜片,然后将膜片蒙在影像图上,用以更新地形图的地理要素。经过地图概括,最后制成供转绘专题影像图的地理底图,其比例尺与专题影响图相同。
遥感系列制图的基本要求
1.统一信息源
2.统一对制图区域地理特征的认识
3.制定统一的设计原则
4.按一定的规则顺序成图

Ⅳ 实验三 遥感图像空间测量

一、实验目的

通过用像元计算地物之间的距离,了解遥感数字图像像元与空间分辨率的关系,以及遥感数字图像的几何构成及空间结构,掌握基于像元的图像空间测量计算方法

二、实验内容

(1)运用像元坐标及多边形面积计算公式测算任意形状影像区域的面积;

(2)运用ENVI影像测量工具(Measurement Tool)测算任意形状影像区域的面积。

三、实验要求

预习本实验,认真观摩老师演示。学会ENVI的Cursor Location/Value和Measurement Tool功能使用,切实理解像元含义,能灵活运用手工测算法和ENVI影像测量工具法计算遥感影像上的距离和面积。测量结果存档。编写实验报告。

四、技术条件

①微型计算机;②桂林市TM 1~7波段数据;③ENVI软件;④Photoshop软件(ver.6.0以上)和ACDSee软件(ver.4.0以上)。

五、实验步骤

(1)建立用自己名字命名的实习专用文件夹。

(2)数据输入。选择“File> Open Image File”,出现文件目录窗口,找到存放桂林市TM 1 ~7波段数据的子目录并打开。

(3)影像漫游。通过拉宽主窗口使影像区域得到最大限度的显示,用鼠标移动Scroll窗口中的红色矩形框,可以使主窗口中影像跟着移动,从而可以观察到整个影像区域的遥感影像。

(4)读取图像坐标。用鼠标从上方横条功能菜单中选“Tools> Cursor Location/Value…”,屏幕上出现“Cursor Location/Value”对话框,其中显示四行数据,如图3-1所示。

Disp#1

——鼠标箭头所在处遥感数字图像的图像坐标,即Sa mple——样(有的也称列),Line— 行—。

图3-1 光标位置/数值窗口

Scrn:R:

——该坐标处三个颜色图像的灰度值(如果是单波段图像,此三值相同)。

Projection: Geographic Lat/Lon— 遥—感影像的地图投影:经纬度地理坐标。只有经过几何校正的遥感影像,才正确显示出该点的经纬度地理坐标。否则,只显示为:LL:0?′0.00″N,0?′0.00″E。

Data:

——该点的影像灰度值,数值范围0~255。

在“Cursor Location/Value”状态下,鼠标箭头移动到图像区任何位置,这四组数据都会跟随显示,因此,就可以轻易读出感兴趣目标位置的准确坐标。

(5)运用像元坐标及多边形面积计算公式手工计算任意影像区域的面积:在完成上述步骤后,用“Tools/Cursor Location/Value”功能,对桂林市TM 假彩色合成影像图(图3-2)中红框的所有角点坐标进行量度,量度结果记入表3-1中。在全部角点量度完成之后,将这些角点坐标值按照顺序代入公式(3-1),就可以计算出桂林市城区的面积。

表3-1 桂林市TM影像城市多边形区域角点坐标测算表

续表

图3-2 桂林市TM5、TM4和TM3波段假彩色合成增强影像图

据此,计算其南北向和东西向长度(结果用千米表示)及区域的面积(结果用平方千米表示)。多边形面积(S)计算公式为

遥感地质学实验教程

(6)运用ENVl的影像测量工具(Measurement Tool)进行面积测量。

1)在主窗口上方菜单下选择“Tools>MeasurementTool”,出现“Display Measurement Tool”对话框。在“Display”文本框内,输入想测量的显示号。选择适当的图像窗口切换按钮,包括主窗口(Image)、滚动窗口(Scroll)、缩放窗口(Zoom),要在任何时间禁用测量功能,选择【Off】切换按钮,如图3-3所示。

图3-3 显示测量工具对话框

2)选择“Type>所需测量的区域形状”。其中,Polygon为多边形;Polyline为折线;Rectangle为矩形;Ellipse为椭圆。在图像显示内,通过用鼠标左键点击,绘制所需要的形状。通过点击鼠标右键,闭合多边形或完成线段。要删除形状,再次点击鼠标右键。

◎对于多边形模式,顶点间的距离被列出,当多边形闭合时,周长和总面积被记录。

◎对于折线模式,列出了顶点间的距离,当折线完成时,给出总距离。

◎对于矩形或椭圆模式,用鼠标左键点击并拖曳到所需要的形状大小。如需要绘制一个正方形或圆,在矩形或椭圆模式下,按住鼠标中键的同时,点击并拖曳。

3)选择“Units>所需测量单位”。若图像的像元大小没有保存在文件头中,当出现“Input Display Pixel Size”对话框时,选择除“Pixel”之外的任何单位,在“X Pixel Size”和“Y Pixel Size”文本框中,输入图像的像元大小(注:TM 像元尺寸为30m ×30m)。

4)保存测量信息。在“Display Measurement Tool”对话框内使用“File”菜单(图3-3),选择“File>Save Points to ASCII”,在“OutputMeasurement Directory”对话框内,输入一个输出文件名。点击【OK】按钮,把测量信息保存到一个ASCII文件,格式为txt。

六、实验报告

(1)简述实验过程。

(2)回答问题:①通过本次实验观察到的事实,说明遥感数字图像模型的构成。②执行“Coursor Location/Value”操作可以得到遥感数字图像的哪些技术参数?Location操作框中显示的数值单位是什么?③比较用手工量度加公式(3-1)测算的市区面积和用ENVI影像测量工具(Measurement Tool)测算的市区面积,对两者测量的一致性和差异进行简单分析。④可以通过对TM 影像像元坐标的量度,就能粗略计算出地物间的距离和面积,而不必依赖于地理坐标,为什么?

实验报告格式见附录一。

Ⅳ 遥感数据类型及数据处理

开展遥感地质找矿工作的关键之一是精心选择和获取遥感数据。不同构造单元具有相异的地理地貌特征、不同成矿条件和各自的成矿地质背景。所以选择与研究区成矿特征相适应的遥感数据,是遥感地质找矿取得良好效果的保证。

一、TM与ETM+数据特征

陆地卫星TM和ETM+分别属于美国陆地资源卫星的第二代和第三代传感器系统,具有一定的继承性。两者之间的多光谱波段数相同,都为7个波段,ETM+增加了一个地面分辨率为15m的全色(PAN)波段,以及将TM6波段的空间分辨率提高到60m。多光谱数据空间分辨满足1∶20万的制图要求。对重点矿区(带)进行遥感地质解译,可以通过8波段与多光谱数据融合方法将影像空间分辨率提高到15m,能够达到1∶5万地图草测精度。因此该数据能够满足本次项目中对遥感地质信息提取的要求。

表5-1列出了TM、ETM+遥感数据的主要性能指标。可以看出,ETM(TM)1~4波段为可见光及近红外光,含铁矿物在此波段有明显的光谱吸收特征,对于探测干旱、半干旱环境中含褐铁矿的岩石、土壤有较好效果;ETM7对于出露地表的粘土与碳酸盐矿物敏感,将ETM7和ETM2~5组合分析,对于识别含铁粘土矿物非常有效,这类矿物通常是热液蚀变的标志;TM6可以探测地表的热辐射强度,对于识别与金矿化密切相关的石英脉本身及含石英较多的岩石是非常有用的。总之,能从TM图像中提取三种基本的光谱信息,即铁染强度、岩石土壤中的羟基和碳酸盐根矿物,是地质找矿的十分重要的资料。

表5-1 TM和ETM+的主要性能参数及光谱识别标志

二、工作使用的数据

研究区分布较广,主要涉及研究区的图像有3景,数据景号与采集日期见表5-2。

表5-2 研究区内遥感数据景号与采集日期

三、多波段遥感数据最佳波段组合优选

由于人们对彩色敏感程度比对全色大得多,遥感图像应用研究中多采用RGB彩色合成图像及彩色空间变换图像来进行构造、地层岩性和岩体等解译。然而ETM+图像有7个波段,各波段物理性质不同,且各波段之间信息又有一定重叠和冗余。一般图像的方差越大,包含的信息越多;相关系数越小,波段间信息冗余度越小。所以要求图像方差要大而相关性要小这样两个条件。基于上述依据,目前最佳波段选择的主要方法有:熵与联合熵、OIF指数法、方差-协方差矩阵特征值法等。其中OIF指数法,该方法是美国查维茨提出,理论依据是:图像数据的标准差越大,所包含的信息量也越多,波段的相关系数越小,表明各波段的图像数据独立性也就越高,信息的冗余度也就越小。由于计算方法简单,易于操作,所以最常用。但这些波段选择方法只考虑到两个方面:信息量和相关性,而没有考虑到研究对象的光谱特征和卫星传感器的用途,即要使波段组合后研究地物的光谱特征差异最大。综合各方面因素,在本文中采用“最佳指数(OIF)+光谱特征分析”法。

四、遥感图像处理

遥感图像处理过程中始终以区域控矿地质理论为基础,结合工作区的自然地理地貌环境,在充分总结成矿规律的基础上,从遥感图像或数据中提取不同层次、不同内容的与成矿有关的控矿要素,圈定成矿远景区。

数据处理过程包括:

1)数据预处理:包括图像数据分析,校正,配准,子区裁剪等操作。

2)数据处理:包括图像增强、信息提取等。主要有两方面工作,即图像分类、解译和成矿信息提取。

3)生成专题图层:研究区构造格架、影像构造单元划分,蚀变遥感异常信息以及成矿位场等图层,为多元信息统计分析提供数据源。

遥感图像处理流程(图5-1)。

五、遥感蚀变异常提取

(一)遥感技术应用于斑岩铜矿勘查的理论基础

1.蚀变信息提取的物理学基础

近三十年来,中外学者进行了岩石和矿物波谱特性的大量研究工作,这些研究涉及晶体场理论、矿物学、固体物理学、量子力学、遥感岩石学等众多领域。在多年岩石和矿物波谱特征研究的基础上,特别是80年代发射的陆地卫星LandsatV增设了两个短波红外波段:TM5(1.55~1.75μm)和TM7(2.08~2.35μm),为找矿提供了可以提取具有找矿标志意义的热液蚀变遥感信息。美国国家宇航局(NASA)1998年发射的主力遥感卫星LandsatⅦ号进一步将全色波段的空间分辨率由LandsatV卫星的30m提高到15m。

图5-1 遥感图像处理流程

从HuntG.R(1978)和他领导的实验室的研究成果以及阎积惠等(1995)依据矿物反射波谱特征吸收谱带特点的定性分类研究中可以知道:主要造岩矿物在可见光—近红外光谱(0.35~2.5μm)并不产生具有鉴定意义的反射谱带,其光谱特征主要由岩石中为数不多的次要矿物决定:

一是含铁(Fe2+、Fe3+)基团产生,含铁矿物主要有角闪石、赤铁矿、褐铁矿、针铁矿、磁铁矿、黄钾铁矾等,他们在TM1—TM4波段有强的吸收带,若岩石中含多量的Fe3+,而含Fe2+很少,这类岩石的主要吸收谱带位于TM4和TM1波段,反射波长相当于TM3波段的电磁波。若含大量的Fe2+、含Fe3+很少,则主要吸收谱带位于1波段,对于波长相当于TM2波段的电磁波有某种程度的反射。

二是含羟基(OH-)、水(H20)或碳酸根基团产生,羟基的吸收谱带主要有二处:2.2μm,2.3μm,由于OH-在2.2~2.3μm附近存在强吸收谷(称为羟基谱带),使得TM7产生低值,TM5产生高值,含羟基矿物大多为次级蚀变矿物,如高岭土、叶蜡石、云母类矿物、绿泥石、绿帘石等,水在1.4μm和1.9μm处有特征吸收带。含碳酸根矿物主要有五个特征吸收谱带(1.9~2.55μm),较强的两个在2.35μm和2.55μm波长处(称为碳酸根谱带),相对较弱的在1.9μm、2.0μm、2.16μm三处。常见矿物包括方解石、白云石、石膏、菱镁矿等。

2.遥感应用的地质学基础

从控矿因素的分析得知,成矿规律的研究必须从分析控制和影响矿床形成的各种地质因素着手,通过对地层、岩体、断裂、蚀变等地质因素分析,确定控矿地质因素,分析其对成矿有利的程度。

围岩蚀变现象作为找矿标志已有数百年历史,发现的大型金属、非金属矿床更是不胜枚举:北美、俄罗斯的大部分斑岩铜矿、我国的铜官山铜矿、犹他州的大铝矿、西澳大利亚的大型金矿、墨西哥的大铂矿、美国许多白钨矿、世界大多数锡矿、哈萨克斯坦的刚玉矿等。有用元素的逐步富集是形成矿床的根本,而这种成矿物质通常由成矿热液进行迁移搬运和卸载沉淀。近矿围岩蚀变主要是不同类型的热液与周围岩石相互作用的产物,是成矿物质逐步富集成矿过程中留下的印迹。热液来源主要有:岩浆作用有关的热液、变质作用有关的热液以及地下水环流热液等。热液流体在运移过程中由于其温度、物理化学条件以及围岩组分差异,形成不同的蚀变矿物,按照围岩组分可以分为三类:中酸性岩的蚀变(云英岩化、绢云母化、钠长石化、钾长石化)、基性、超基性岩的蚀变(蛇纹石化、绿泥石化、青磐岩化、碳酸盐化)、石灰岩及其他碳酸盐类的蚀变(矽卡岩化、硅化、重晶石化、白云岩化)。并且不同类型的围岩蚀变指示矿床存在的意义不同,这是由于各种蚀变和矿石同样是成矿作用的产物,从而在时间空间上矿和有关的蚀变存在密切的联系,并且不同类型的蚀变及其组合专属一定的矿床(矿种或矿床类型),因而可以用蚀变来预测矿化矿产资源(Курекнн.1954)。近矿围岩蚀变的研究和热液蚀变岩石的发现,可以指示找矿的空间范围,增加找到矿床的机会。而斑岩铜矿的形成过程中蚀变特征尤其明显。

(二)蚀变遥感异常信息提取方法

本次工作中主要采用的是主分量分析法、比值法增强蚀变遥感异常信息,通过阈值处理(决策树技术)分级提取。工作过程为:预处理(去干扰)→信息提取→异常优化。

1.预处理

(1)高端切割去云及盐碱地的影响

根据图像采样统计结果,云的光谱特征在TM(ETM)1、2、3的灰度值相对较高,TM(ETM)5、7的灰度值相对较低;盐碱地一般表现为在TM(ETM)3的灰度值相对较高,其次为TM(ETM)5、7、2、1。本次工作采用ETM1高端切割来去除云的干扰,采用ETM3的高端切割来去除盐碱地的影响,效果较好。

(2)比值法消除植被影响

植被是蚀变异常提取过程中常见的干扰因素。工作区虽然植被覆盖较少,但为了能尽可能完全地提取致矿异常,还是做了此项处理。根据植物的光谱曲线特征绿色植被在TM(ETM)4(0.76~0.90μm)的反射率最高,可以认为,只有当有其他因素影响时,TM(ETM)5才可能大于TM(ETM)4,因此,可以选取ETM5/4≤1来消除植被干扰。

2.信息提取

一般常见的图像处理方法有:主分量分析、光谱角法、比值法等。下面简要介绍这几种方法的基本原理:

(1)主分量分析(PCA:PrinCipal Component Analysis)又称主成分分析,在计算机处理中称K—L变换。TM数据在图像处理系统中经K-L变换将TM图像转变为一组互不相关的表征函数序列,目的在于压缩TM的波谱维数、突出地物类别、提取与矿化有关的蚀变信息。K-L变换在数学含义上,它是一种基于图像统计特征的多维正交线性变换。经过这种变换后生成一组新的组分图像(数目等于或小于原波段数),是输入的若干图像的线性组合,即:

新疆北部主要斑岩铜矿带

其中,X是原多波段图像的数据矩阵,矩阵元素为P个波段的像元值向量;Y是输出的主组分矩阵,即q个组分的像元值向量,一般q≤p;T为变换核矩,通常为由变换波段之间的协方差矩阵所产生的特征向量矩阵。

新疆北部主要斑岩铜矿带

y1=t11x1+t12x2+…+t1pxp 第一组分

yq=tq1x1+tq2x2+…+tqpxp 第q组分

y1,y2…yq按协方差矩阵的特征值大小依次排序。

K—L变换后,第一组分(y1)取得最大信息量(可达90%左右),其余依次减少,一、二、三组分基本是已集中了绝大部分信息,后面组分包含的信息量往往已非常小。

(2)光谱角法

把每一个多维空间点以其空间特征向量来表征,并以空间向量角的相似性作为判据。它是一种监督分类,要求每一类别有一个已知参考谱。此参考谱可以是地面实测入库光谱,也可以是已知条件的图面单元的统计入库结果(又称图像采样)。为了直观,设三维空间点P在彩色坐标系中的特征向量为OP,以此向量为轴作小角锥(图5-2),凡位于此小角锥内的空间点都视为相似的。

图5-2 光谱角法原理

根据线性代数理论,向量α、β间夹角θ为

新疆北部主要斑岩铜矿带

式中,(d,β)为n维向量d,β的内积,|α|、|β|分别为向量d,β的长度,当存在已知矿点或矿床时,可以利用光谱角法圈定与其有相似谱特征的成矿远景区,以减少主分量分析所获异常中的非矿异常;当存在两种以上已知矿点时,可以用光谱角法对主分量分析异常进行类别区分。这两点是光谱角法在异常信息提取中对主分量分析法可以起的辅助作用。

(3)比值法

大量的研究成果表明,蚀变矿物在不同TM波段之间存在光谱反差,其中含羟基的粘土矿物和碳酸盐矿物,在TM7波段具有强吸收,在TM5波段为强反射,而褐铁矿在TM3表现为高反射,在TM1、TM2和TM4则具不同程度的吸收特征,故TM5/TM7、TM3/TM1、TM5/TM4和TM4/TM3通常可用于增强提取上述特定的热液蚀变信息。

如何评价遥感图像的质量,常用的指标有哪些

评价:
1)查看影像直方图中单个亮度值出现的频率。
2)在计算机上查看某一个具体位置为地理区域的像元亮度值。
3)计算基本的医院描述性统计量,判断影像遥感数据中是否存在异常。
4)计算多元统计量以确定波段间的相关关系(如识别冗余信息)。
上述都为比较宏观的描述,在具体评价的时候,可以从影像各个波段的最小值,最大值,值域,均值,标准差,波段间的协方差和相关系数等具体定量指标进行确认。

Ⅶ 遥感数据及其处理

一、遥感数据及其特征

滇东北地区铅锌矿遥感地质调查工作共分为三个层次,其中1∶5万层次及1∶2.5万层次使用美国陆地卫星(Landsat-7)ETM+数据作为基础数据,1∶1万层次使用美国快鸟(QuickBird)卫星数据作为基础数据。

(一)ETM+数据

ETM+数据是美国1999年4月所发射的陆地7号卫星携带的增强型主题成像仪(ETM+)对地球表面所采集的数据,其基本参数、设计波段的特征及设计用途见表3-1。

表3-1Landsat-7卫星参数及数据特征

长期对Landsat系列卫星数据在地质方面的应用研究表明,Landsat卫星数据各个波段都能提供地质构造、地形地貌信息。其中,5、6、7波段信息量更为丰富,1、2、3、4波段能够区分岩石中的铁、锰矿物和含铁、锰矿物的相对含量,尤其是4波段对于三价铁的矿物比较敏感,可以借此区分岩性,5波段对绿帘石族特征谱带敏感,7波段识别碳酸盐岩、绿片岩、绢云片岩和粘土岩及粘土矿物聚集带的效果较好,6波段对于识别地热异常、岩石和构造的含水性及鉴别地质构造有一定的用途。另外,Landsat-7还增加了一个15m分辨率的全色波段,从视觉效果上直接提高了对地物的识别,见表3-2。

表3-2 Landsat-7ETM+数据特征及在地质上的用途简表

图3-1 滇东北地区ETM数据分布示意图

本次工作范围占有ETM数据129-041及129-042两景,时相均为2001年12月23日。工作范围在两景数据中的位置如图3-1。数据元数据情况见表3-3。

表3-3 129-041,129-042卫星数据元数据特征

续表

(二)快鸟(Quick Bird)卫星数据

快鸟(Quick Bird)是美国Digital Globel(Earth Watch)公司2001年10月发射的高分辨率卫星,其空间最高分辨率为61cm,可制作比例尺在1∶1万左右的影像。卫星参数及数据特征见表3-4。

表3-4 Quick Bird卫星参数及数据特征

快鸟卫星数据的波段设置,与ETM数据具有一定的对应性,1、2、3、4波段波长范围完全一致,只是在全色波段快鸟数据比ETM数据的波长范围略窄一些。

大比例尺遥感地质调查工作主要布设于彝良毛坪地区,购置快鸟数据80km2,范围为X:3038000—3046000,Y:35392000—35402000。属于现拍数据,数据采集时间为2004年5月8日,其元数据特征见表3-5。

表3-5 毛坪地区快鸟卫星数据元数据特征

二、遥感数据处理

(一)数据处理软件

遥感图像处理主要使用加拿大专业遥感图像处理软件PCIGeomatica8.0及美国着名专业遥感图像处理软件ENVI3.5。

(二)数据处理流程

遥感数据处理的主要流程包括数据组织(即数据种类选择、范围确认、时相选择、订购等)、数据镶嵌(单景数据不存在此过程)、几何校正、图像生成、图像增强、图像整饰等过程,见图3-2。

图3-2 数据处理流程图

(三)数据处理

1.数据镶嵌

所谓镶嵌,就是将相邻两景图像拼接、形成大图像的过程。在图像镶嵌过程中如果使用不同时相的数据,由于数据成像的季节、太阳高度角不同,导致同名像元点在不同的数据上可能表现为不同的灰阶;当使用相同时相数据时,由于地面站后期人为分景、单独处理,也会导致同名像元点在不同的数据上有可能表现为不同的灰阶,同一地物在不同数据上表现出不同特征。因此说,图像的镶嵌过程是一个数据重叠范围内的配准过程。

滇东北地区1∶5万工作区涉及129-041及129-042两景数据,数据镶嵌是在PCIGeomatica遥感图像处理平台的GCPworks模块中完成的。镶嵌过程中侧重于重叠数据范围内同名点的选择及镶嵌线的选择。一般每两景图像上下镶嵌选择10~15个GCP。在镶嵌线的选择上,避免一条直线,根据镶嵌区的地貌特征尽量使镶嵌线通过色差较大的地方,避免人为造成线性体。然后利用PCI提供的ColourMatching功能对镶嵌区内的图像色彩进行匹配,使镶嵌后图像的色彩在镶嵌线两侧柔和过渡,达到无缝的效果。

2.几何校正

(1)几何校正方法

由于卫星姿态与轨道、地球运动和形状、遥感器本身的性能和扫描镜的不规则、探测器的配置、检测器采样延迟、数模转换的误差等等原因,均会导致原始遥感图像的严重几何变形,不能直接使用。一般而言,卫星地面站会根据卫星轨道的各种参数将图像进行粗略的校正,但往往由于遥感器的位置及姿态的测量值不高,其粗校正后的图像仍存在不小的几何变形。用户需要利用地面控制点和多项式纠正模型做进一步的几何纠正。只有按照一定的投影模式对原始图像进行几何精校正后的图像,才能使图像上每个像元具有相应的准确的地理坐标,只有进行几何精校正后的图像才能制作成能与其他图件配合使用的“地图(map)”。几何纠正的步骤有以下3步:

1)地面控制点(GCP)的选择。地面控制点的选择一般有两种方法,实地测量和在相同比例尺或更大比例尺地形图上采点。地面控制点选择的原则是,选择在图像上显示清晰、实地不(或很少)随时间变化的定位识别标志,如道路交叉点、河流交汇处等。另外,控制点要在校正范围内均匀分布,并保证一定的数量。

2)多项式模型纠正。多项式模型纠正就是在图像像元坐标(x,y)与地形图上相应点的地理坐标(X,Y)之间通过适当的坐标多项式模型(坐标变换函数)建立一种关系,从而通过像元的重新定位把图像拟合到地形图上。多项式校正模型的数学表达式为:

滇东北铅锌银矿床遥感地质与成矿预测

式中:aij,bij为多项式系数;N为多项式次数,取决于图像的变形程度、控制点的数量和地形位移的大小。

3)重采样。由于经过了多项式校正,重新定位后的像元在原图像中分布是不均匀的,因此需要对原图像按一定的规则重新采样,进行亮度值的插值计算,建立新的图像矩阵。常用的重采样方法有最临近法、双线性内插法、三次卷积内插法。3种方法在地物边缘增强、地物连贯性、计算速度等方面各有利弊。其中三次卷积内插法对边缘有所增强,并具有均衡化和清晰化的效果,但计算量大。

(2)1∶5万工作范围图像几何校正

1∶5万工作范围图像校正使用相应范围的1∶5万地形图60幅。校正点的选择是在60幅地形图上均匀选择GCP203点,校正模型选择了二次多项式拟合,重采样方法使用三次卷积内插法。校正后的图像投影方式为高斯投影、6°分带,中央经线为105°,椭球体采用克拉索夫斯基1954椭球体,与地形图保持一致。

(3)1∶1万工作范围图像几何校正

由于缺少相同比例尺地形图,收集到的地形资料只有区内1∶5万地形图和极少部分1∶2000地形图,因此校正点的采集采用地形图采点与野外实地测点相结合的方法完成。共采集GCP33个。校正模型选择了二次多项式拟合,重采样方法使用三次卷积内插法。校正后的图像投影方式为高斯投影、3°分带,中央经线为105°,椭球体采用克拉索夫斯基1954椭球体。

3.彩色合成

彩色合成的目的是将单色波段每像元的28(即256)色空间扩展到224(即16777216)色空间,增强目标地物的可视性,提高目视解译效果。通过色彩丰富、信息携带量大的基础彩色图像,解译人员才能充分识别图像的信息,进行地质解译。

为达到最佳的彩色合成效果,参加合成的波段选择常遵循以下原则:

1)参加合成的单波段有较大的方差,即波段本身具有较大的信息量。

2)参加合成的各波段间相关系数较小,避免信息的重复和冗余。

3)参加合成的三波段图像的均值要相近,避免合成图像产生严重偏色。

4)为突出目标地物,要选择目标物体显示较为突出的波段。

彩色合成图像为3个波段,赋予红、绿、蓝三原色的合成图像。

1∶5万工作范围基础图像制作选择了波段7、4、2合成方案,1∶2.5万工作范围基础图像选择了波段4、5、3合成方案,1∶1万工作区基础图像选择了波段3、2、1合成方案。选择依据将在“数据特征”一节中进行分析。

4.图像增强

图像增强的目的是为了突出相关的主题信息,提高图像的视觉效果,使解译分析者能更容易地识别图像内容,从而从图像中提取更有用的信息。图像增强的方法很多,从其作用的空间来看可以分为光谱增强和空间增强。这两种增强类型在整个图像处理和信息提取过程中都很常用。对于基础图像的增强一般采用光谱增强,从像元的对比度及波段间的亮度等方面改善图像的视觉效果,基本不改变目标地物的形状、大小等特征。

项目工作中的3种基础图像在生成后均采用光谱增强。根据图像各波段的直方图分布,分析整幅图像中像元间对比度的差异大小,确定光谱增强的具体手段。其中1∶5万范围的波段7、4、2合成图像面积大,地物种类多,信息丰富,增强过程中要求各种信息的充分显示,因此使用直方图均衡化的方法,理论上使图像中的各种亮度值均衡分布。1∶2.5万范围的波段4、5、3合成图像,图像范围相对较小,又由于地形切割较深,造成图像上山体阴影所占面积较大,而西南角地区比较平坦,反射率较高,像元亮度大,因此选择线性拉伸的方法进行增强。1∶1万范围的快鸟卫星波段3、2、1数据合成影像中,红尖山—姜家湾—花苗寨一带植被覆盖较多,造成影像上大面积绿色,使用线性拉伸的方法可以保证原始图像的对比度不再有大改变。

图3-3 毛坪地区图像不同拉伸方法效果对比图

拉伸方法应用效果以毛坪地区1∶1万影像为例,见图3-3。由图中可以看出,不拉伸的图像显然色彩层次太少,使用均方根拉伸的图像总体上提高了图形的亮度,压抑了像元间对比度的扩展,同时亮度高的地区彩色层次减少;直方图均衡化的图像提高了像元间的对比度,在原图像的暗色地区使色彩层次增加,但高亮色地区由于像元频率的增高而使色彩层次减少;线性拉伸不同程度地克服了以上几种拉伸的弊端,使图像色彩趋于丰富,层次趋于明显,便于解译者的解译。

在解译过程中为突出某种特征地物也可采用其他的增强手段,这里不再赘述。

5.图像融合

为了提高图像清晰度,同时充分发挥多波段数据的特点,需要将高分辨率的全色波段与参加彩色合成的多光谱波段进行融合处理。融合后的图像可以发挥多光谱图像与高分辨率图像各自的优势,弥补不足,改善遥感图像目标识别的准确率,提高遥感图像的综合分析精度。

融合方法大致可以分为彩色相关技术和数学方法两大类。彩色相关技术包括彩色合成、彩色空间变换等,有利于保持分辨率和色彩特征,如IHS变换法。常用的融合方法有IHS变换法、PCA变换法、HPF变换法与小波变换法等。

鉴于工作目的,为了提高地面分辨率和保持低分辨率图像的光谱信息,工作中选择了IHS变换方法,即将标准的RGB图像分离为空间信息的明度、波谱信息的色别及饱和度,而后用高分辨率图像代替明度再进行反变换的融合方法。融合后的图像既具有较高的分辨率,又具有与原图像相同的色度与饱和度。其具体过程如图3-4。

项目工作中所采用的ETM数据7个30m多光谱波段与15mPAN波段源于同一传感器,快鸟数据的4个2.4m多光谱波段与其0.6mPAN波段也源于同一传感器,因此数据融合过程中不存在数据配准问题,只对低分辨率波段进行重采样,并对参加融合的各波段进行直方图匹配,再进行IHS变换和RGB变换。其中低分辨率波段的重采样使用的方法为三次卷积内插法。融合前后图像特征如图3-5所示。

图3-4 IHS变换融合流程图

图3-5 融合前、后图像特征对比示意图

(四)图像处理精度评价

镶嵌校正过程中的精度评价常常使用RMS误差(均方根)来衡量,RMS是GCP的输入位置和逆转换之间的距离;它是在用转换矩阵对一个GCP做转换时所期望输出的坐标与实际输出的坐标之间的偏差。

滇东北铅锌银矿床遥感地质与成矿预测

式中:Ri为GCPi的RMS误差,XRi为GCPi的X残差,YRi为GCPi的Y残差。

整幅图像的总RMS误差:

滇东北铅锌银矿床遥感地质与成矿预测

式中:T为总RMS误差。

1.1∶5万镶嵌精度

数据镶嵌的误差大小对几何校正有很大影响,大的误差将人为增大图像的畸变。工作中1∶5万工作范围需要129-041与129-042两景数据上下镶嵌,按照《1/25万遥感地质调查技术规定》(DD2001—01)对镶嵌配准精度的规定同比计算,预设镶嵌误差T≤0.40。镶嵌过程中共采集镶嵌GCP13个,纠正模型1次,误差见表3-6。

表3-6 1∶5万图像镶嵌误差

由表3-6中可以看出,T=0.311,小于预设值0.40,能够满足无缝镶嵌的要求。

2.校正精度

(1)1∶5万图像校正精度

校正精度按照《1/25万遥感地质调查技术规定》(DD2001—01)对图像校正精度及校正点数目的同比计算,预设校正误差T≤0.80。校正过程中在60幅1∶5万地形图上基本均匀地选择203点,经误差调整选择有效校正GCP190个,校正多项式模型选择二次多项式,其误差见表3-7,由表中可以看出,T=0.794,小于预设值0.80,能够达到规范要求。

表3-7 1∶5万图像校正误差

(2)1∶1万图像校正精度

由于工作区只收集到1∶5万地形图和占很小部分的1∶2000地形地质图,且1∶5万地形图年代比较久远,因此在几何校正过程中误差较大。由于图像细节清晰,不影响使用与定位。

3.融合精度

低分辨率数据与高分辨率数据融合的目的是为了提高分辨率,为此,图像融合前后清晰程度的改变成为融合精度评价的主要指标。图像的清晰度是指地物的边界或影线两侧附近灰度有明显差异,即灰度变化率大小,它反映图像微小细节反差变化的速率,即图像多维方向上密度变化的速率,可用g来表示,一般来说融合前后g的变化越大则融合后图像的清晰度越高。

滇东北铅锌银矿床遥感地质与成矿预测

ETM30m多光谱波段与15m全色波段融合前后的值及快鸟数据2.4m多光谱数据与0.6m全色波段融合前后的g值对比见表3-8。由表中可以看出,融合后密度变化速率比原来提高几十到上百倍,表明图像融合后精度有很大提高。

表3-8 融合精度对照

三、工作区遥感数据

(一)1∶5万工作范围ETM数据特征

1∶5万工作范围图像行列数为9233(列)×12423(行)(插值为15m),总像元数为114701559点,由于左上角数据缺少使1140点为无效像素。

数据基本统计特征如表3-9至表3-11,各波段直方图见图3-6。

表3-9 1∶5万范围ETM数据基本统计特征

表3-10 1∶5万范围ETM数据波段间协方差矩阵

表3-11 1∶5万范围ETM数据波段间相关系数矩阵

从以上统计参数来看,8个波段的均值除60m分辨率的波段6和15m分辨率的PAN波段外,其他6个波段相差不大。8个波段的标准差从大到小排列为S5>S7>S4>S3>S6>S8>S2>S1,表明波段5的像元亮度值离散程度最大,波段1最小。对于波段间的相关系数而言(由于6波段与8波段分辨率的不同而不考虑),R12、R23、R25、R35、R45、R57、R37、R27均比较大,数值在0.80以上,而R13、R24、R34、R47相对较小,数值在0.7~0.8之间,相关系数最小的为R14、R15、R17,数值在0.5~0.6之间,相关系数大小也表征了波段间信息冗余的多少。1∶5万工作范围的彩色合成方案就是根据以上的统计数据结合彩色合成波段选择的其他原则而确定的。

直方图是图像范围内每个亮度值(DN)的像元数量的统计分布,能够直观反映原始图像的质量信息,如亮度值分布范围、亮度值分布规律,也可直接大致判读出图像的中值等参数。从8个波段的直方图可以看出波段4、5、7的直方图呈双峰表现,主峰在50~60出现,而在10~15之间又出现一个表现很窄的次峰,这是由于图像上的阴影及水体的像元亮度值所产生的,由此大致可以计算出阴影及水体在图像中所占的面积,以波段5为例计算出所占比例为6%左右。其他各波段的直方图比较接近正态分布。

协方差矩阵反映各个波段各自亮度值取值的分散程度,同时又能反映不同波段间的相关密切程度,它是单波段图像统计表与相关系数矩阵的合成,同时又能反向分裂。

图3-6 1∶5万范围ETM各波段图像直方图

(二)1∶2.5万工作范围ETM数据特征

1∶2.5万工作范围行列数为3000(列)×1860(行),总像元数为5580000点,插值后分辨率为15m。数据基本统计特征如表3-12至表3-14,各波段直方图如图3-7。

表3-12 1∶2.5万范围ETM数据基本统计特征

表3-13 1∶2.5万范围ETM数据波段间协方差矩阵

表3-14 1∶2.5万范围ETM数据波段间相关系数矩阵

图3-7 1∶2.5万范围ETM各波段图像直方图

从以上统计参数来看,8个波段的均值除60m分辨率的波段6为110表现较大,15m分辨率的PAN波段为29表现较小外,其他1、4、5三个波段数值相差不多,在50左右,2、3、7三个波段也相差不大,在37左右。8个波段的标准差从大到小排列为S5>S4>S7>S3>S8>S6>S2>S1,表明波段5的像元亮度值离散程度最大,波段1最小。对于波段间的相关系数而言(由于6波段与8波段分辨率的不同而不考虑),R57、R23、R73表现最大,数值在0.9以上,R12、R13、R25、R27、R35、R45次之,数值在0.8~0.9之间,而R24、R34、R47相对较小,数值在0.7~0.8之间,相关系数最小的为R14、R15、R17,数值在0.5~0.6之间,相关系数大小也表征了波段间信息冗余的多少。1∶2.5万工作范围的彩色合成方案就是根据以上的统计数据结合彩色合成波段选择的其他原则而决定的。

8个波段的直方图形态大致与1∶5万范围一致,表现意义相同,不再赘述。

(三)1∶1万工作范围QB数据特征

1∶1万工作范围采用高分辨率的QB数据,其多光谱波段只有4个,分辨率为2.4m,工作范围图像行列数为4168(列)×3407(行),总像元数为14200376点。多光谱数据基本统计特征如表3-15、表3-16,各波段直方图如图3-8。

表3-15 1∶1万范围QB数据基本统计特征

表3-16 1∶1万范围QB数据波段间相关系数矩阵

从以上统计可以看出,QB数据4个波段中1、2、3波段的相关系数均较大(R12=R23=0.96,R13=0.89),只有近红外波段与其他波段的相关系数很小(R14=0.29,R24=0.37,R34=0.20),同时可以看出近红外波段的中值与标准差也与其他波段相差很大,这是由于工作区内大面积植被所引起的。众所周知,绿色植物的叶绿素对可见光红波段(0.6~0.7μm)有强吸收,而叶内组织对近红外波段(0.7~1.1μm)有高反射,因此大面积植被将会直接改变相关波段的像元亮度值的分布。在基础图像彩色合成波段选择中,依据各项原则结合统计参数,选择波段1、2、3参与合成,为使合成后图像接近真彩色,合成方案为3(R)+2(G)+1(B)。

图3-8 1∶1万范围QB各波段图像直方图

四、遥感信息增强与提取

为了突出地质目标,增强微弱岩石蚀变信息,在图像处理过程中的不同阶段使用了多种信息增强技术方法,主要有地表三维技术、比值运算、KL变换、空间滤波、彩色变换技术等(表3-17)。

表3-17 工作中采用的主要信息增强方法技术及用途

(一)地表三维技术

地表三维技术是利用DEM(数字高程模型)将地图上的二维平面空间按高程的差异制作成一种地形上连续起伏变化的曲面,从而更真实地反映地表地貌的自然景观,突出显示特殊岩性的特殊地貌特征。

毛坪地区地表三维影像的制作利用了1∶5万DEM与QB3、2、1彩色合成图像;1∶5万DEM来源于1∶5万地形图,通过等高线数字化—高程赋值—DEM生成等过程实现。地表三维影像的制作主要有DEM与影像的配准及配准后的DEM与影像的复合两个过程。

图3-9是毛坪地区地表三维景观局部,其中视点为(103°54བྷ″,27°27བ″),视向45°,视角60°,视域60°。

图3-9 毛坪地区快鸟遥感影像地表三维景观(局部)

从毛坪地区地表三维影像可以看出左侧发育柱状节理的玄武岩及右侧二叠系灰岩地貌景观。

(二)图像比值运算

比值运算是将两个波段中不同亮度的地物成辐射状投射到一个曲线上,从而可非线性地夸大不同地物间的反差,它能够压抑影像上由于地形坡度和方向而引起的辐射量变化,减小环境条件的影响,提供任何单波段都不具有的独特信息。其运算公式为:

滇东北铅锌银矿床遥感地质与成矿预测

式中:DNm(x,y),DNn(x,y)分别是像元(x,y)在m和n波段上的亮度值;Rmn(x,y)为输出的比值。工作中比值运算主要运用于以下两方面。

1.计算植被覆盖度

植被覆盖度(f)是指某一时间某一地区内植被冠层的垂直投影面积与区域总面积之比。遥感地质解译主要是利用地表物体的光谱反射特性的差异,提取与地质工作有关的信息,工作的特点主要针对地表岩石、构造等,当地表植被覆盖时,对这些信息的解译将造成阻碍。因此,了解工作区的植被覆盖度能客观评价该区遥感地质解译的可解译程度。

研究表明绿色植物在可见光红波段(0.6~0.7μm)有强的吸收(叶绿素引起),在近红外波段(0.7~1.1μm)有高的反射和透射(叶内组织引起)。因此,在这两个波段使用比值运算可以充分表达它们反射率之间的差异,制作植被为高亮显示的植被信息图,并直接在图像上以像元数目比值求解植被覆盖度。

2.提取矿化蚀变信息

ETM的不同波段在地质上有不同的应用,这主要取决于各种与矿有关的蚀变矿物在不同波段存在波谱特征上的差异。图3-26是典型蚀变矿物的反射波谱曲线,从图中可看出,通常所讲的泥化蚀变矿物(即含有OH-、CO2-3)在2.2μm附近有明显吸收带,并与TM7波长范围相吻合。而在波段5的波长范围(1.55~1.75μm)内少有矿物的吸收谱带,多数都表现出高反射的特点,未蚀变矿物在波段5范围均没有明显的波谱特征,表现在TM5与TM7两个波段的相对亮度值的相对差异。因此,常常可使用波段5/7比值来突出含羟基和CO2-3类的蚀变矿物特征。另外,由图中可以看出三价铁矿物在波段1具有强的吸收,而在波段3具有相对强的反射;二价铁矿物在波段4具有强的吸收,而在波段5相对具有反射特征,因此也常用波段5/4、3/1比值来突出铁类矿物蚀变特征。比值后的图像上欲突出的蚀变特征常以高亮值显示而被提取出来。

(三)KL变换

KL变换又称为主成分分析,是在统计特征基础上的多维(如多波段)正交线性变换。多波段图像通过这种变换后产生一组新的组分图像,把原来多个波段中的信息进行集中和重组,并使新组分图像之间互不相关。其运算公式为:

滇东北铅锌银矿床遥感地质与成矿预测

其中,X为原图像p个波段的像元值向量,Y为变换后的q个组分的像元值向量,q≤

,T为变换矩阵。

KL变换要求Y的分量Yj与Yk相互独立,且若有j<k,则Yj的方差小于Yk的方差,所以必须有:

滇东北铅锌银矿床遥感地质与成矿预测

又因为:

所以:

即把矩阵D(X)变为对角矩阵Λ,对角线元素λ1、λ2…λp是D(X)的特征值,也分别是Y1、Y2…Yp的方差。

KL变换后的新组分图像中,一般第一组分具有大量的信息,但它包含了地形、植被等因素,对地质体的区分而言就成为干扰因素;其他组分虽然具有小的方差,包含的信息量少,但它可能正好突出了区分某些地质体的信息。因此,当需要对诸多信息进行综合时,往往使用KL变换后的第一组分,当要求某种特征信息时就选择相关的其他主组分。如图3-10,在B7单波段上玄武岩和火山碎屑岩界线显示隐约(或不显示),而在KL变换(参与波段B1、B2、B3、B4、B5、B6、B7)后的PC3上,界线显示明显。

图3-10 KL变换前后岩性边界对比影像

此外,KL变换也是提取与铁化和泥化有关蚀变的遥感信息的重要方法。通过对KL变换后的特征矩阵进行分析,选择富集特征信息的主组分,对蚀变信息的提取又很大的帮助。在后面信息提取过程中已经使用。

(四)空间信息增强

空间信息增强是指通过改变图像空间特征或频率来增强图像上信息的手段,即改变图像的“粗糙”或“平滑”程度来增强特征信息的方法。工作中使用了方向滤波和平均值滤波。

1.方向滤波

方向滤波是梯度法边缘增强的一种,它通过指定的8个方向的滤波模块对图像按方向进行边缘增强。工作中主要使用在线性体的解译和统计中,滤波后的图像突出显示了某个方向的线性体特征,同时对与该方向正交的线性体进行模糊。如图3-11所示,7波段的图像在分别使用 个方向模板滤波后,分别突出显示了45°方向和135°方向的线性体。

图3-11 方向滤波前后图像对比

2.平滑滤波

当需要去除图像上的噪声时,往往使用平滑滤波或低通滤波,加强图像中的低频成分,减弱图像的高频成分,使图像由“粗糙”变得“光滑”。均值滤波就是一种典型的平滑滤波方法,即用局部范围内临域像元亮度均值代替中心原像元亮度值。工作中平滑滤波主要使用在遥感蚀变信息提取后,信息噪声的去除。如图3-12所示,提取的锈水河铅锌矿异常在平滑滤波后,杂乱细小的信息斑点被去除,信息成“块”成“带”出现,方便了对异常分布的分析。

图3-12 平滑滤波前后PCT分级效果对比

(五)彩色变换技术

彩色变换技术是指将彩色图像在不同的彩色坐标系统之间的变换,主要应用在不同遥感器的数据或不同性质的数据融合后彩色合成图像的产生。在图像融合上常使用IHS变换,其简式如下:

滇东北铅锌银矿床遥感地质与成矿预测

变换后RGB混色系统分离为代表空间信息的明度(I)和代表波谱信息的色别(H)、饱和度(S)。从公式可以看出,明度(I)是3个波段的平均亮度,融合时使用直方图匹配后的高分辨率波段代替I,与原来的H、S一起进行IHS变换的反变换,重新变换到RGB空间,这样图像既保证了高分辨率数据的参与,提高地面分辨能力,又保持了原来多光谱波段的光谱特征。其融合效果参见图3-5。

另外,项目工作中较常用的是RGB彩色合成,当图像的饱和度缺乏时,也通过IHS变换的方法,专门对变换后的饱和度分量(S)进行调整,反变换后的图像可解译性会明显提高。

阅读全文

与遥感影像云量的计算方法相关的资料

热点内容
住宅雨水管沉水弯的安装方法 浏览:817
胃虚怎么治疗方法 浏览:484
物理规律有哪些科学方法 浏览:948
卵巢过度最佳恢复方法 浏览:171
银屑病的中医治疗方法 浏览:929
排气扇挡风安装方法 浏览:231
肾炎消水肿简单的方法如何调理 浏览:72
关于运动负荷的案例及解决方法 浏览:646
尾巴找平衡最佳方法 浏览:792
汽车静电贴的使用方法 浏览:333
数据分析方面的可视化方法 浏览:428
搭架方法有哪些 浏览:225
丘疹性荨麻疹鉴别方法 浏览:336
老年人多语症最佳治疗方法 浏览:31
构造方法在继承中如何调用 浏览:899
泡苏打水的正确方法 浏览:976
论文查找资料的方法有哪些 浏览:296
奶酪使用方法 浏览:981
肩周炎手术松解后的锻炼方法图解 浏览:144
什么方法如何追到摩羯座女 浏览:76