A. 土壤的生物学指标是什么
土壤粒径大小:→容重、总空隙度、持水性(量)、通气性
土壤容重:→土壤通气量、持水性(有7种与土壤容重存在明显负相关,有5种与土壤水的累积入渗速率呈正相关)
土壤密度:
土壤水热程度:
土壤孔隙度:
总孔隙度:
大孔隙度:通气孔隙0.1mm+
小孔隙度:持水孔隙0.001~0.1mm
土壤酶活性指标:(受到土壤有机无机复合体保护,所以稳定)
酶数量(enzymaenumber,EAN)指标:
EAN = 0.2 (DH + CA/10 + AP/40 + PR/2 + AM/20)
式中:DH 为脱氢酶活性 (TPF g/(10 kg•27 h)),CA 为过氧化氢酶活性 (O2 %/3 min),AP 为碱性磷酸酶活性 (PNP mg/(10 kg•5 h)),PR 为蛋白酶活性(氨基氮g/(10kg•16 h)),AM 为淀粉酶活性 (淀粉分解 %/(l0g•16 h ))
土壤脲酶(有机质、碱解氮、有效钾密切相关,许景伟,王卫东,李成. 不同类型黑松混交林土壤微生物酶及其与土壤养分关系的研究[J ]. 北京林业大学学报,2000 ,22(1) :51,但在菜园土壤上,于忠祥等发现脲酶活性仅与水解氮显着相关,与有机质呈显着负相关,于忠祥,汪维云. 合肥郊区菜园土壤酶活性研究[J ]. 土壤通报,1996 ,27(4) :179 – 181)
多酚氧化酶(与全氮含量呈极显着负相关,与有机质和有效磷呈显着负相关,表明多酚氧化酶活性愈大,土壤养分含量愈低,孙翠玲,郭玉文,佟超然等. 杨树混交林地土壤微生物与酶活性的变异研究[J ]. 林业科学,1997 ,33(6) :488 - 496)
过氧化氢酶(与有机质、全氮、全钾呈极显着正相关,是影响土壤肥力的一个关键酶,孙翠玲,郭玉文,佟超然等. 杨树混交林地土壤微生物与酶活性的变异研究[J ]. 林业科学,1997 ,33(6) :488 - 496)
转化酶(反映土壤呼吸强度,酶促作用产物—葡萄糖是植物、微生物的营养源。土壤的肥力水平和生物学活性强度在转化酶上反映得最明显,与土壤有机质、全氮、全钾、碱解氮、速效磷、有效钾均呈显着相关,孙翠玲,郭玉文,佟超然等. 杨树混交林地土壤微生物与酶活性的变异研究[J ]. 林业科学,1997 ,33(6) :488 - 496)
酸性磷酸酶(与土壤中全氮、碱解氮、全钾、有效钾及速效磷的含量呈正相关,与全磷呈负相,孙翠玲,郭玉文,佟超然等. 杨树混交林地土壤微生物与酶活性的变异研究[J ]. 林业科学,1997 ,33(6) :488 - 496)
脱氢酶
三苯甲基四氮唑氯化物法(有改进TTC法)顿咪娜,胡文容。脱氢酶活性检测方法及应用
土壤微生物指标:
(4)土壤中细菌 真菌和 PAHs 降解菌的计数、[12]采用平板稀释法 细菌采用牛肉膏蛋白胨培养基,真菌采用马丁氏培养基PAHs降解菌数量的[13]测定,采用MPN方法
微生物组成和多样性(在很大程度上决定了生物地球化学循环、土壤有机质的周转及土壤肥力和质量)
微生物生物量(被认为是表征土壤质量变化最敏感最有潜力的指标,是表征土壤肥力特征和土壤生态系统中物质和能量流动的一个重要参数,所有的微生物种群数量一般随着土壤深度的增加而降低,其中真菌数量的降低幅度较细菌高)
微生物活性(细菌数量很大程度上与土壤有机质含量成正相关)
土壤微生物多样性(物种多样性、遗传(基因)多样性、生态多样性以及功能多样性)王菲,杨官品等.微生物标志物在土壤污染生态学研究中的应用.生态学杂志,2008, 27 (1) : 105- 110
微生物商(Cmic/Corg)Balota EL, Colozzi-Filho A, Andrade DS, Dick RP. Microbial biomass in soils under different tillage and crop rotation systems.Biology and Fertility of Soils, 2003, 38: 15-20
微生物呼吸强度和微生物的代谢商(qCO2) 为某一时刻 CO2 释放速率与 MBC 的比,反映了单位生物量的微生物在单位时间里的呼吸作用强度,它可以同时表示微生物量的大小和活孙波, 赵其国, 张桃林等. 土壤质量与持续环境. Ⅲ:土壤质量评价的生物学指标. 土壤, 1997, 29 (5): 225-234,龙健, 黄昌勇, 滕应等. 矿区重金属污染对土壤环境质量微生物学指标的影响.农业环境科学学报, 2003, 22 (1):60-63
土壤动物指标:
对土壤过程有显着影响的主要以无脊椎动物为主,它们依靠传播接种微生物等方式来加速营养物质的分解和还原,促进土壤大孔隙的形成,并促进团粒结构的形成和稳定
蚯蚓粪便能增强土壤酶活性
土壤水分:空气烘箱法
土壤酸碱度(对微生物数量影响显着,真菌数量在酸性土壤中多,细菌和放线菌数量在中性或碱性土壤中较多)
B. 蚯蚓是怎样改良土壤的
蚯蚓是衡量土壤健康的重要指标
蚯蚓的粪便中含有丰富的氮、磷、钾等无机盐,可以增加土壤有机质并改土壤善结构,还能中和酸性或碱性土壤,增加磷等速效成分,使土壤适于农作物的生长。如果农田中的蚯蚓消失了,土壤健康指标是很差的。因为蚯蚓不仅能使土壤疏松、增加土壤肥力还能改土壤善结构。
蚯蚓是土壤肥力转化师,是象征土壤质量好坏的生物体,农田里没有蚯蚓代表着土壤已经出问题了!那么你是否留意过,土壤里已经好久没看到蚯蚓了?
蚯蚓是用湿润的体壁进行呼吸的,大雨过后,水淹,雨水把土壤缝隙中的氧气排挤出来,土壤中的氧气减少,蚯蚓在土壤中无法呼吸,为了呼吸蚯蚓纷纷钻出地面。蚯蚓在土壤中的活动,能疏松土壤,增加土壤中的氧气,有利于根系的呼吸和生长。
为什么我们现在在耕地里看不到蚯蚓
五十年代以来,农作物施肥主要靠化肥。由于我们长期的偏重于提高作物的单位面积产量,大量使用化学肥料,农药和杀虫剂,造成土壤理化性质劣变,土壤肥力下降,加速表土冲蚀,土壤板结,化学特性劣化(土壤酸化,土壤盐碱化,土壤肥力的流失等)以至于造成土壤中的蚯蚓生存环境被破坏从而导致蚯蚓的减少或灭绝,蚯蚓减少可代表土壤生态被破坏,土壤质量降低!
土壤离不开它
蚯蚓在生态系统中的角色有:消费者、分解者和调节者。
蚯蚓能破碎、分解和混合有机质。蚯蚓的取食活动加强了植物残体分解中的生物过程,富含易水解氮的蚓粪又加快了周围凋落物的矿化过程。
蚯蚓活动能改变土壤有机质的空间分布,使土壤有机质呈斑块状分布,并能将有机质与矿质土混合,形成富含有机质的土壤微粒。
蚯蚓能提高土壤中可利用氮和磷的水平。蚯蚓活动能提高土壤矿化氮的浓度,原因是蚯蚓消费了大量的土壤微生物,加速了微生物组织的矿化和周转。
蚯蚓的掘穴行为及取食偏好与土壤有机磷源的特性关系密切,蚯蚓的活动便于磷向下移动,提高了磷在土壤中的斑块分布,同时在蚯蚓粪或洞穴等“热点”区域能显着改变磷的状态,如可溶性、有机磷库、碱性磷酸酶活性等。
对土壤理化性质的影响
蚯蚓对土壤结构、团聚体形成以及植物生长和养分吸收所需的物理条件有十分重要的影响。蚯蚓主要通过其排泄物及孔道影响土壤结构,能促进了土壤团聚过程,使空气和水容易抵达植物的根部。
蚯蚓的活动还能对土壤pH值、氧化还原状态、土壤温度等土壤调节因子有所影响。如蚯蚓排泄物pH值明显高于周围土壤,能起到一定的调节作用。
对植物、微生物及其他动物的影响
对植物的影响:蚯蚓对土壤中可利用氮、磷有重要影响,可以促进植物生长,还可能使植物体内化学物质发生变化,进而影响植物与其他生物的相互作用。对植物种子的散布、埋藏以及植物幼苗的恢复和空间分布均有明显的影响。
对微生物的影响:在有蚯蚓作用的土壤中微生物总量减少,而可利用的营养物质增加。而且通过蚯蚓肠道后,虽然微生物总量减少,但有活性的微生物生物量增加。
对其他土壤生物的影响:蚯蚓的活动也常有利于其他土壤动物的生存,比如它能通过多种途径影响跳虫的丰度和多样性。蚯蚓能通过很多途径,如直接摄食土壤和凋落物中的线虫,或通过蚓粪间接改变线虫群落结构。蚯蚓粪中几乎没有植物寄生性线虫,但食细菌线虫比例明显升高。
另外:蚯蚓粪含氮磷钾分别为1.4%、1%、1%,含腐殖酸46%,含23种氨基酸,丰富的蚯蚓蛋白酶,每克蚯蚓粪有105×8个有益微生物(老化土壤只有105-106个),并具颗粒均匀、透气保水、无味卫生、肥效持久等特点。含水85%的20厘米厚蚯蚓粪在酷暑中晒15天,含水量仍可以达到45%,大大增强土壤的抗旱能力。蚯蚓粪中的蚯蚓酶还可以杀死土壤中的病毒、有害菌和对植物生长有抑制作用的物质。蚯蚓粪是一种理想的天然生物肥。除此之外,蚯蚓还能降解、疏散土壤中的污染物。
C. 土壤酶活性的测定结果
土壤酶活性包括已积累于土壤中的酶活性,也包括正在增殖的微生物向土壤释放的酶活性。它主要来源于土壤中动物、植物根系和微生物的细胞分泌物以及残体的分解物。土壤酶活性和作物产量之间的相关性优于土壤养分和作物产量之间的相关性,这说明土壤酶活性和施肥方式呈密切的相关性,可将其作为评价土壤肥力的指标。
------王灿,等。《长期不同施肥方式下土壤酶活性与肥力因素的相关性》
土壤蔗糖酶、脲酶和碱性磷酸酶活性互呈极显着正相关,且均与速效氮及有机质呈极显着正相关。------ 刘梦云,等。《宁南山区不同土地利用方式土壤酶活性特征研究》
土壤酶活性受施肥处理影响明显,其中蛋白酶、过氧化氢酶、转化酶和脲酶活性在化肥处理中均受到抑制,在有机肥中却得到大幅提升,碱性磷酸酶活性变化与之正好相反;在混施处理中各酶活性均有不同程度的增强,其中以脲酶活性增强尤为突出。土壤酶活性在各作物之间表现出一定的差异,但总的来说差异不显着。土壤各酶之间及酶与土壤肥力因素之间存在显着或极显着相关关系。
------张小磊,等。《长期施肥对城市边缘区不同作物土壤酶活性的影响》
D. 怎样识别土壤是酸性还是碱性
可以到化学药品店或测量仪器销售部购买PH试纸,测试土壤溶液的酸碱性,土壤PH值小于7的是酸性土壤(数字越小,酸性越强),PH值大于7的是碱性土壤(数字越大,碱性越强)。PH值在6.5-7.5之间(接近中性)的土壤最适宜农作物生长。
一: 看土源:一般采自山川,沟壑的腐殖土,多呈黑褐色,比较疏松,肥沃,通透性良好,是比较理想的酸性腐殖土。如:松针腐殖土,草炭腐殖土等。
二: 看土色:酸性土壤一般颜色较深,多为黑褐色,而碱性土壤颜色多呈白、黄等浅色。有些盐碱地区,土表经常有一层白粉状的碱性物质。
三: 看地表植物:在野外采掘花土时,可以观察一下地表生长的植物,一般生长野杜鹃、松树、杉类植物的土壤多为酸性土;而生长柽柳、谷子、高梁等地段的土多为碱性土。
四: 看质地:酸性土壤质地疏松,透气透水性强;碱性土壤质地坚硬,容易板结成块,通气透水性差。 五: 凭手感:酸性土壤握在手中有一种“松软”的感觉,松手以后,土壤容易散开,不易结块;碱性土壤握在手中有一种“硬实”的感觉,松手以后容易结块而不散开。
六: 看浇水后的情形:酸性土壤浇水以后下渗较快,不冒白泡,水面较浑;碱性土壤浇水后,下渗较慢,水面冒白泡,起白沫,有时花盆外围还有一层白色的碱性物质。
七: 用pH试纸来测土壤的酸碱性,方法为:取部分土样浸泡于凉开水中,将试纸的一部分浸入浸泡液,后取出,观察其颜色的变化,然后将试纸与比色卡相比较,若pH值=7,土壤为中性;若pH值<小,则为酸性;若pH值>7,则为碱性。
门冬科门冬属文竹 喜温暖溼润半阴通风环境疏松肥沃排水良富 含腐和搏兆殖质砂质壤土栽培楼主要用般泥土栽培面混点 *** 较冬季注意防寒
磷酸酶(phosphatase)是一种能够将对应底物去磷酸化的酶,即通过水解磷酸单酯将底物分子上的磷酸基团除去,并生成磷酸根离子和自由的羟基。磷酸酶的作用与激酶的作用正相反,激酶是磷酸化酶,可以利用能量分子,如ATP,将磷酸基团加到对应底物分子上。在许多生物体中都普遍存在的一种磷酸酶是碱性磷酸酶。
碱性磷酸酶(ALP或AKP)是广泛分布于人体肝脏、骨骼、肠、肾和胎盘等组织经肝脏向胆外排出的一种酶。这种酶能催化核酸分子脱掉5’磷酸基团,从而使DNA或RNA片段的5’-P末端转换成5’-OH末端。但它不是单一的酶,而是一组同功酶。目前已发现有AKP1、AKP2、AKP3、AKP4、AKP5与AKP6六种同功酶。其中第1、2、6种均来自唤租肝脏,第3种来自骨细胞,第4种产生于胎盘及癌细胞,而第5种则来自小肠绒毛上皮与成纤维细胞。
取样后,用蒸馏水浸泡后过滤,取清澈的液体,用PH试纸或PH计测定其PH值,如小于7为酸性,大于7为碱性,
黑土中性偏酸,有机质及氮磷钾含量丰富,土壤肥沃。
土硝,俗名火硝,化学名称硝酸钾。它既不是酸性也不是碱性,显中性。
酸性土壤主要分布于南方地区,种类有:棕壤、褐土、娄土、灰褐土、灌淤土等。
碱性土壤多分布于北方地区,种类有:碱土、黄绵土、黑垆土、棕钙土、栗钙土等。
土壤的主要型别:
1.棕壤:棕壤又称棕色森林土,主要分布于半溼润半干旱地区的山地垂直带谱中,如秦岭北坡、吕梁山、中条山、六盘山等高山及洮河流域的密茂针叶林或针阔混交林的林下。在褐土分布区之上。
具有深达1.5-2m发育良好的剖面,有枯枝落叶层、腐殖质聚积层,粘化过渡层,疏松的母质层等。表土层厚约15-20cm,质地多为中壤。其下则为粘化紧实的心土层,粘粒聚集作用明显,厚约30-40,富含胶体物质和粘粒,有明显的核状或棱块状结构,在结构体表面有明显的铁锰胶膜覆被。再下逐渐过渡至轻度粘化的底土层。K、Ca、Mg、Mn在表层腐殖质中有银咐明显聚积。土壤胶体吸收性较强,土壤代换总量约5—25当量/100g土,土壤吸收性复合体大部分为盐基所饱和,盐基饱和度达80%以上。土壤呈微酸性反应,PH值6.5左右。发育在酸性基岩母质上的棕壤,PH值可达5.5-6,盐基饱和度也较低,约在60—70%。棕壤土养分释放迅速,因土壤质地粘重,结构和通透性差,水分不易入渗,在地势较高的山坡地,易受干旱威胁,在地势低洼地带,又易形成内涝。
2.褐土:褐土分布区为暖温带半干旱半溼润的山地和丘陵地区,在水平分布上处于棕壤以西的半溼润地区,在垂直分布上,位于棕壤带以下,在黄土高原地区主要分布于秦岭北坡、陇山、吕梁山、伏牛山、中条山等地形起伏平缓、高度变化不大的山地丘陵和山前平原以及河谷阶地平原。
褐土多发育在各种碳酸盐母质上,其成土过程,主要是粘化过程和碳酸钙的淋溶淀积过程。典型的褐土剖面包括暗灰色的腐殖质层(A层)、鲜褐土的粘化层(B层)、碳酸钙积聚的钙积层(BCa)和母质层(C层)。土体中的粘化现象明显,粘化层紧实而具有核状或块状结构,物理性粘粒含量一般在30—50%。钙积层碳酸钙含量20—30%。土壤上层呈中性或微酸性反应,下层呈中性或微碱性。土壤代换量较高,可达20—40mg当量/100g土,代换性盐基以钙、镁为主,粘粒矿物以水云母和蛭石为主。具有良好的渗水保水效能,但水分的季节性变化明显,表现为春旱明显。土壤胶体吸收能力强,盐基饱和度高。在自然植被下,有机质含量为1—3%,但由于褐土适于耕作,大部分已辟为农地,致使有机质含量逐渐减少(一般为1%左右),氮磷贮量少。褐土肥效反应快,但稳肥性差。由于粘化现象明显,土壤易板结,耕性较差。
3.碱土:分布面积很小,主要分布在银川平原西大滩一带的洼地。其主要特征是土壤胶体复合体吸收了大量的交换性钠,土壤呈碱性,PH值大于9,农作物和高等植物均无法生长。
4.娄土:主要分布在潼关以西、宝鸡以东的关中平原地区,在山西的南部,河南的西部也有一定面积的分布。
娄土是褐土经人为长期耕种熟化、施肥覆盖所形成的优良农业土壤。其剖面构型大体可分上下两部分。上部分为娄化土层,由耕作层、犁底层和老熟化层所组成,质地中壤,颜色灰棕色,呈粒状结构或团粒结构。下部为自然褐土剖面,由古耕作层、粘化层、钙积层和母质组成。粘化层一般呈枝柱状结构,棕褐色,质地粘重。土壤有机质含量一般在1%左右。保水保肥,耕性较好,土层深厚,适种性广。
5.黄绵土:黄绵土是黄土高原最主要的土壤型别,广泛分布于黄河中游六省区的黄土丘陵土壤侵蚀强烈地区,以陕北分布最多,陇东、陇中和晋西北次之。常和黑垆土交错分布。
黄绵土发育于黄土母质,是以耕种熟化为主的成土过程与以侵蚀为主的地质过程共同作用的产物,成土作用微弱,其性状与母质相似。同时,由于分布区干旱少雨,有机质的积累和淋溶作用弱,自然剖面不明显,只有耕层和底土层,缺乏明显的犁底层和淀积层。土壤质地一般为粉砂质轻壤土。耕层为粒状或不稳定的团粒结构,荒地呈团粒结构,底土层为发育良好的柱状结构,表现为黄土的直立性强。全剖面呈强石灰弱碱性反应,底土即有石灰沉积,呈假菌丝状或粉霜状。土质疏松多孔,具有良好的通气透水性,但结构性弱,水稳性差,抗蚀力低,易受侵蚀。化学成份也与母质相似,化学成分以SiO2和AL2O3 为主,含量超过60%,还含有3—6%的Fe2O3,盐基代换量低。富含矿质养分,全磷0.1—0.2%,全钾1.8—2.6%,碳酸钙达10%以上,全氮量较低,不及0.1%。有机质分解较快,一般有机质含量0.5%左右。粘土矿物以水云母为主,很少发生分解破坏。通过控制侵蚀和培肥,黄锦土即可培育为上层疏松、下层稍紧实、通气透水、保土保肥、高产稳产的海绵土。在发育较好的黄绵土上,心土层略有粘化现象。整个土体土层深厚,质地以粉砂为主,质地均匀,色泽淡黄,近浅灰黄色,结构性弱,水稳性差,易受侵蚀,整个土体表现疏松,是一种通气透水性良好的土壤。
6.盐土:主要分布在银川平原、河套平原、晋中盆地及渭河下游的低洼地、湖泊边缘及河滩地。
盐土指土体含盐量超过1%,作物不能生长,并有盐生植被的土壤。其主要特征是具有积盐层,盐分组成中,阴离子以硫酸根为主,氯离子次之;阳离子以钠为主,镁次之。盐土目前主要为荒地。
7.黑垆土:黑垆土是暖温带的古老耕种土壤,广泛分布于陕北、晋西北、陇东、陇中及内蒙古、宁夏南部的黄土高原,分布的地形部位主要为侵蚀较轻的黄土高原塬面,在梁峁顶部或分水鞍部有残存,此外,在丘间盆地、河谷沿岸的川台地也可见到。
成土母质为第四纪黄土,土壤剖面可分为耕作熟化层、腐殖质层、碳酸盐淀积层和黄土母质层。耕作层又可分为耕作层和犁底层。耕作层厚20—30cm,呈灰褐色,轻壤质,PH7.5—9,显强石灰反应,团粒--团块状结构,疏松绵软。犁底层暗灰棕色,质地较粘,一般为中壤土,较紧实。腐殖质层厚约100—120cm,呈暗灰带褐色,粘粒含量稍高,质地较粘,多为重壤土或粘土,显棱块状结构,在孔壁、裂隙面上有假菌丝状或霜粉状的碳酸盐淀积。碳酸盐淀积层一般在150cm以下,厚约1m,其下过渡不明显。本层无粘化特征,有少量瘤状或豆状石灰结核和假菌丝状、霜粉状碳酸盐的淀积。土壤自表层开始就有强烈的面对碳酸盐反应。土壤腐殖质含量一般为1—0.5%,全氮量约为0.03—0.1%,全磷量为0.15—0.17%,全钾量1.6—2.0%,代换量9—14mg当量/100g土。土壤通透性好,具较强的养分释放效能和较大的蓄水保墒保肥能力。
8.灰褐土:灰褐土亦称灰褐色森林土,它是干旱半干旱地区山地森林垂直带森林土壤,主要分布在六盘山、吕梁山、大青山、乌拉山、贺兰山等地的海拔1200—2600m,即栗钙土或棕钙土之上,亚高山草甸之下。在黄河上游的大通河、洮河等主要支流也有分布。
灰褐土成土母质多样,土壤剖面层次分化明显,由残落物层、腐殖质层、粘化层、钙积层和母质层组成。土壤有机质分布深且含量高,表土一般为6—13%,钙积层出现部位有高有低,钙积层碳酸钙含量一般是10—16%。土壤酸碱性变化较大,表土微酸一酸性,粘化层中性一碱性,钙积层为碱性。土壤胶体全部为盐基所饱和,代换性阳离子以钙为主,土壤代换量很高,一般是20—50当量/100g土,甚至更高。
9.灰钙土:灰钙土为荒漠草原地带土壤,分布在甘肃、宁夏境内黄河以南,甘肃华家岭以北的黄土丘陵、缓坡平原、平坦台地、高原盆地边缘、山麓平原、河谷阶地。如兰州、榆中、定西、靖远、会宁、临夏、永靖、海原、同心等。
发育于黄土母质,成土过程有腐殖质的积累过程和碳酸盐的淋溶过程,但与栗钙土和黑垆土比较有明显的减弱,土壤剖面分化不太明显。土壤有机质含量通常在0.7—1.5%,分布在50cm之上,全剖面的碳酸钙含量都较高(平均为9%),在30cm以下积聚较多,可达20%左右,呈眼状及假菌丝状。剖面底部含大量盐类,主要是CaSO4和MgSO4,剖面上中部(10—20cm)有明显的粘化现象,粘粒含量变于10—20%之间。在区域性地区有盐化和碱化特征。盐基代换量低,约为14mg当量/100g土。土壤结构性差,相应透水透气性差;含氮量低,但富含钾素和其它矿质养料,矽、铁铝率在5—10%之间,粘土矿物以水云母为主,土体呈碱性反应,PH值在8.0—9.5之间。
10.棕钙土:棕钙土为干旱草原向荒漠过渡的地带性土壤,主要分布于鄂尔多斯中西部。
棕钙土的成土母质有洪积-冲积的砂质、砂壤质和砾质,也有黄土状沉积物和各种结晶岩及沉积岩的残积母质。土壤剖面的表层具有结皮和片状结构,腐殖质比较明显,表层有机质含量在0.6—2.0%之间,颜色呈棕色。碳酸钙已接近表层,多在15—40cm深度处积聚,一般含量10—12%,多的可达20%。土壤上部酸碱度中性,下部呈碱性反应(PH8.5左右)。盐基代换量小于10mg当量/100g土。腐殖质层的结构性较差,土层较紧实。粘土矿物以水云母为主,次为蒙脱石,并有铁的氧化物出现。
11.栗钙土:栗钙土为干旱草原地带性的土壤,主要分布于鄂尔多斯高原的东部和青海海东浅山地区。
成土母质主要为沙黄土和砂砾质洪积物,通过腐殖质积累过程和碳酸钙积累过程形成了栗钙土,与黑钙土比较,腐殖质积累过程已渐减弱,而钙化过程相对较强,形成土层较薄,一般120cm。剖面形态分化比较明显,表层20—30cm为腐殖质层,有机质含量通常在2—5%,土壤颜色呈栗色,腐殖质层的下部紧实度大,妨碍根的发育。剖面中下部(一般在30—70cm之间)有明显的钙积层,碳酸钙含量可达50%以上。钙积层除了有大量的碳酸钙外,还有碳酸镁的盐层。再下是碱金属(K、Na)的重碳酸盐,同时也含有碱土金属(Ca、Mg)的重碳酸盐,最下层是碱金属的硫酸盐和氯化物盐层,有时有数量不等的石膏聚积。栗钙土吸收性复合体的代换性阳离子总量一般为15—30mg当量/100g土。土壤一般中上层呈中性到弱碱性反应,下层呈碱性反应,土壤结构性差,团粒不稳定。
12.风沙土:风沙土是风成沙母质上发育的土壤,主要分布在库布其沙漠、毛乌素沙地、腾格里沙漠东南缘,以及风蚀沙化严重的长城以北风沙区。
风沙土的剖面发育微弱。流动风沙土,除干沙层(厚约5—10cm)和温沙层界限明显外,无分化特征,土壤质地分选良好,细沙(0.25—0.05mm)占90%以上,有机质含量低,在0.012—0.233%之间。半固定风沙土,地面有结皮或稍覆浅沙,结持较紧,剖面有分化,有机质染色层明显,有机质含量0.2—0.8%。按碳酸盐和易溶盐含量可再分为半固定风沙土、碳酸盐半固定风沙土和盐化风沙土三类。固定风沙土,粘粒增多,有机质含量可达1.0%左右,土壤保水保肥性进一步改善,肥力提高。
13.灌淤土:灌淤土是长期利用富含泥沙的河水灌溉,在淤积和耕作施肥交替作用下形成的一种特殊农业土壤,多分布在河套平原、银川平原及沿黄河的一些地方。
灌淤土由灌溉熟化层和底土或埋藏土层组成。灌溉熟化层又可分为新灌淤层、近代灌淤层和老灌淤层三部分。灌淤土的主要特征是全剖面比较均一,熟化程度较高,具有较好的耕性、结构性、保肥性、持水性和透水性。
14.潮土:主要分布在黄河及其支流沿岸河谷平原或区域性低地上。受地下水影响,形成明显的锈纹绣斑层。全剖面可分为耕作层、锈土层和母质层。由于有机质积累较弱,有机质含量通常在1%左右。
你好,
这是最适宜植物生长的结构体土壤型别,它在一定程度上标志着土壤肥力的水平和利用价值。其能协调土壤水分和空气的矛盾;能协调土壤养分的消耗和累积的矛盾;能调节土壤温度,并改善土壤的温度状况;能改良土壤的可耕性,改善植物根系的生长伸长条件。
土壤耕层
土壤耕层是对于耕作的土壤来说的,对于仍处于自然形态的土壤来说是没有这个概念的。土壤耕层的形成是由于人类的农业种植活动扰乱了土壤的自然状态
1、ph值4.49的土壤是酸性。
2、酸碱度描述的是水溶液的酸碱性强弱程度,用pH值来表示。热力学标准状况时,pH=7的水溶液呈中性,pH<7者显酸性,pH>7者显碱性。
pH值,亦称氢离子浓度指数、酸碱值,是溶液中氢离子活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。这个概念是1909年由丹麦生物化学家Søren Peter Lauritz Sørensen提出。p代表德语,意思是力量或浓度,H代表氢离子(H)。pH在拉丁文中是。
pH的定义式为:
其中[H+](此为简写,实际上应是[HO+],水合氢离子活度)指的是溶液中氢离子的活度(稀溶液下可近似按浓度处理),单位为mol·L-1。
298K时,当pH<7的时候,溶液呈酸性,当pH>7的时候,溶液呈碱性,当pH=7的时候,溶液为中性。水溶液的酸碱性亦可用pOH衡量,即氢氧根离子的负对数,由于水中存在自偶电离平衡,298K时,pH + pOH = 14。
pH值小于7说明H的浓度大于OH的浓度,故溶液酸性强,而pH值大于7则说明H的浓度小于OH的浓度,故溶液碱性强。所以pH值愈小,溶液的酸性愈强;pH愈大,溶液的碱性也就愈强。
在非水溶液或非标准温度和压力的条件下,pH=7可能并不代表溶液呈中性,这需要通过计算该溶剂在这种条件下的电离常数来决定pH为中性的值。如373K(100℃)的温度下,中性溶液的pH ≈ 6。
另外需要注意的是,pH的有效数字是从小数点后开始记录的,小数点前的部分为指数,不能记作有效数字。