導航:首頁 > 知識科普 > 假分數除假分數的簡便方法奧數

假分數除假分數的簡便方法奧數

發布時間:2022-06-23 19:54:35

Ⅰ 假分數怎麼化成最簡分數

假分數化成最簡分數的方法:
一、先把分子、分母分別分解質因數;
二、把分子、分母中的公因數都約去。
假分數就化成最簡分數了。
如:70/56
一、70=2x5x7
56=2x2x2x7
二、約去公因數2與7
70/56=5/2x2
=5/4。

Ⅱ 六年級奧數分數簡便計算

1、求33…………34的平方(省略19個3)的各數位上的數之和。解答:拆分成(33……3+1)^2的形式總共有23個3。(33……3+1)^2=9×(11……11)^2+2×3×(11……11)+1=99…99×(11……11))+6×(11……11)+1其中:99……99=10^23-1(33……3+1)^2=(99……99)×(11……11)+6×(11……11)+1=(10^23-1)×(11……11)+6×(11……11)+!=(10^23)×(11……11)+5×(11……11)+1=1111…1155…56(23個1,22個5,最後為6)其數字和=23×1+22×5+6=139。2、2-(十六分之七X二又三分之二+七分之一)X一又十一分之十除以(十二又三分之一3.75除以十四分之五)思路點拔:將真分數化成假分數、小數化成分數,約分、通分計算。3、0.12(二循環)+0.23(三循環)+0.34(四循環,後面的也一樣)+0.45+0.56+0.67+0.78+0.89解答:將循環小數化成真分數進行計算根據0.3(3循環)=1/3;0.2(2循環)=(1/3)×(2/3);0.4(4循環)=(1/3)×(4/3);……0.9(9循環)=(1/3)×(9/3);得出各循環小數部分的分數分別是:(1/3)×(2/30);1/30;(1/3)×(4/30);……(1/3)×(9/30)。然後,第一個小數部分分別相加,將1/30,變成(1/3)×(3/30)循環的部分再分別相加原式=(0.1+0.2+0,3+……+0.8)+(1/3)×(2/30)+(1/3)×(3/30)+(1/3)×(4/30)+……(1/3)×(9/30)將後面分數部分提出(1/90),變成(1/90)×(2+3+4……+9)進行計算。4、1+三分之一+三的二次方分之一+三的三次方之一。。。。。。。+三的一百次方之一解答:令原式=A則3A=3+1+1/3+1/3^2+1/3^3+……+1/3^99=3+A-1/3^100解出方程:A=3/2-(2×3^100)^(-1)

Ⅲ 奧數題,不會做,高分懸賞解題思路與運算方式

從分數單位入手,分數單位是3分之一,說明分母是3,可倒數的單位是10分之一,說明原分數的分子是10,所以得出這個分數是3分之10,然後乘上5分之6,得出結果是4

Ⅳ 怎麼把假分數用短除法

短除法是求最大公因數的一種方法,也可以用來求最小公倍數。求幾個數最大公因數的方法,開始時用觀察比較的方法,即:先把每個數的因數找出來,然後再找出公因數,最後在公因數中找出最大公因數。後來,使用分解質因數法來分別分解兩個數的因數,再進行運算。之後又演變為短除法,一起用質數除,最後再整理。
但是假分數是不能用短除法求最大公因數,因為求解最大公因數的時候,要求的兩個數或兩個以上的數均為正整數。

Ⅳ 假分數化帶分數的公式,和帶分數化假分數的公式

沒有公式,只有方法:

1、假分數化帶分數。

分子除以分母,得出的最大整數寫在側面,剩下的余數依舊寫在分子上。

比如13/5=2(3/5)

2、帶分數化假分數。

將帶分數旁的整數乘以分母+分子得出的總數寫在分子上,分母不變。

比如2(3/5)=(2*5+3)/5=13/5

(5)假分數除假分數的簡便方法奧數擴展閱讀:

數的轉化:

1、假分數化成整數或帶分數

把假分數化成整數或者帶分數,要用假分數的分子除以分母,能整除的,所得的商就是整數,當不能整除時,所得的商就是帶分數的整數部分,余數是分數部分的分子,分母不變。例如:

17/3=5又3/2,7/28=4。

2、帶分數化成假分數

把帶分數化成假分數,要用原來的分母作分母,用分母與帶分數的整數部分的乘積再加上原來的分子作假分數的分子。例如:

3又5/2=5/3x5+2=5/17。

二、帶分數計演算法則

計算帶分數加減法,要把整數部分與分數部分分別相加減。如果被減數的分數部分小於減數的分數部分,需要從被減數的整數部分拿出1化成假分數,和原來被減數的分數部分合並起來再減。

帶分數計算乘除法時,需要化成假分數來計算。

什麼是假分數假分數如何計算

分子大於或等於分母的分數是假分數如
5/5
9/2
一般要化成帶分數或整數如
5/5=1
9/2=4(1/2)讀作4又二分之一
做法是用分子除以分母商為整數,余數做分子,除數做分母

Ⅶ 奧數的常用解題方法 來探討一下吧

小學數學公式:
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 Ѕ=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh
回答者: awmcyun - 初入江湖 二級 4-16 12:50

1.認識圓柱和圓錐,掌握它們的基本特徵。認識圓柱的底面、側面和高。認識圓錐的底面和高。通過對圓柱和圓錐的認識,牢記圓柱的表面積,圓柱的體積和圓錐的體積。

2.探索並掌握圓柱的側面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關的簡單實際問題。

3.通過觀察、設計和製作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯系,發展學生的空間觀念。

正方形的面積為邊長的平方,周長為4*邊長
長方形的面積為長乘寬,周長為2*(長+寬)
平行四邊形的面積為長乘高,周長為2×臨邊的和
梯形的面積為(上底+下底)乘高÷2,周長為各邊之和
三角形的面積為底乘高除以2,周長為各邊之和
圓柱的面積為側面積加上底面兩圓面積之和,等於底面周長乘以高加2πr^2
圓錐的面積為扇形面積加底面積,等於底面周長乘以母線長除以2,或nπR^2除以360
體積和表面積
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a2
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6 公式: S=6a2
長方體的體積=長×寬×高 公式:V = abh
長方體(或正方體)的體積=底面積×高 公式:V = abh
正方體的體積=棱長×棱長×棱長 公式:V = a3
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh

算術
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有餘數的除法: 被除數=商×除數+余數
方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
代數: 代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c

分數
分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等於分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等於乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數

長度單位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面積單位:
1平方千米=100公頃 1公頃=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1畝=666.666平方米。
體積單位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量單位
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤


什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
比例的基本性質:在比例里,兩外項之積等於兩內項之積。
解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y

百分數
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
要學會把小數化成分數和把分數化成小數的化發。

倍數與約數
最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。
最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。
互質數: 公約數只有1的兩個數,叫做互質數。相臨的兩個數一定互質。兩個連續奇數一定互質。1和任何數互質。
通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
約分:把一個分數的分子、分母同時除以公約數,分數值不變,這個過程叫約分。
最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最後,得數必須化成最簡分數。
質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
質因數:如果一個質數是某個數的因數,那麼這個質數就是這個數的質因數。
分解質因數:把一個合數用質因數相成的方式表示出來叫做分解質因數。
倍數特徵:
2的倍數的特徵:各位是0,2,4,6,8。
3(或9)的倍數的特徵:各個數位上的數之和是3(或9)的倍數。
5的倍數的特徵:各位是0,5。
4(或25)的倍數的特徵:末2位是4(或25)的倍數。
8(或125)的倍數的特徵:末3位是8(或125)的倍數。
7(11或13)的倍數的特徵:末3位與其餘各位之差(大-小)是7(11或13)的倍數。
17(或59)的倍數的特徵:末3位與其餘各位3倍之差(大-小)是17(或59)的倍數。
19(或53)的倍數的特徵:末3位與其餘各位7倍之差(大-小)是19(或53)的倍數。
23(或29)的倍數的特徵:末4位與其餘各位5倍之差(大-小)是23(或29)的倍數。
倍數關系的兩個數,最大公約數為較小數,最小公倍數為較大數。
互質關系的兩個數,最大公約數為1,最小公倍數為乘積。
兩個數分別除以他們的最大公約數,所得商互質。
兩個數的與最小公倍數的乘積等於這兩個數的乘積。
兩個數的公約數一定是這兩個數最大公約數的約數。
1既不是質數也不是合數。
用6去除大於3的質數,結果一定是1或5。

Ⅷ 六年級奧數分數簡巧算的方法!

1、求33…………34的平方(省略19個3)的各數位上的數之和。解答:拆分成(33……3+1)^2的形式總共有23個3。(33……3+1)^2=9×(11……11)^2+2×3×(11……11)+1=99…99×(11……11))+6×(11……11)+1其中:99……99=10^23-1(33……3+1)^2=(99……99)×(11……11)+6×(11……11)+1=(10^23-1)×(11……11)+6×(11……11)+!=(10^23)×(11……11)+5×(11……11)+1=1111…1155…56(23個1,22個5,最後為6)其數字和=23×1+22×5+6=139。2、2-(十六分之七X二又三分之二+七分之一)X一又十一分之十除以(十二又三分之一3.75除以十四分之五)思路點拔:將真分數化成假分數、小數化成分數,約分、通分計算。3、0.12(二循環)+0.23(三循環)+0.34(四循環,後面的也一樣)+0.45+0.56+0.67+0.78+0.89解答:將循環小數化成真分數進行計算根據0.3(3循環)=1/3;0.2(2循環)=(1/3)×(2/3);0.4(4循環)=(1/3)×(4/3);……0.9(9循環)=(1/3)×(9/3);得出各循環小數部分的分數分別是:(1/3)×(2/30);1/30;(1/3)×(4/30);……(1/3)×(9/30)。然後,第一個小數部分分別相加,將1/30,變成(1/3)×(3/30)循環的部分再分別相加原式=(0.1+0.2+0,3+……+0.8)+(1/3)×(2/30)+(1/3)×(3/30)+(1/3)×(4/30)+……(1/3)×(9/30)將後面分數部分提出(1/90),變成(1/90)×(2+3+4……+9)進行計算。4、1+三分之一+三的二次方分之一+三的三次方之一。。。。。。。+三的一百次方之一解答:令原式=A則3A=3+1+1/3+1/3^2+1/3^3+……+1/3^99=3+A-1/3^100解出方程:A=3/2-(2×3^100)^(-1)

Ⅸ 假分數除正分數怎麼做

把假分數的分子和分母顛倒,然後和正分數相乘,分子相乘的結果作分子,分母相乘的結果做分母,結果能約分的要進行約分即可

閱讀全文

與假分數除假分數的簡便方法奧數相關的資料

熱點內容
房子怎麼折簡單方法 瀏覽:280
猴子的占格方式方法圖片 瀏覽:888
如何自己做燈籠簡單的方法 瀏覽:612
烯草酮草胺磷油懸的分析方法 瀏覽:827
蘭州哪裡有賣矮牽牛的種植方法 瀏覽:44
十字交梁的計算方法 瀏覽:866
蟲草腎寶片的食用方法 瀏覽:696
貴州遵義道真灰豆腐食用方法 瀏覽:387
手機控制電視設置方法 瀏覽:379
甲魚如何養殖方法 瀏覽:409
試用較簡便的方法計算圖示桁架 瀏覽:572
仔細審題的方法和技巧 瀏覽:614
小狗狗的訓練方法是什麼 瀏覽:914
滾珠開關使用方法 瀏覽:65
凍茄子怎麼做好吃的正確方法 瀏覽:442
小區的鍛煉方法 瀏覽:835
50歲盤頭發蓬鬆的簡單方法 瀏覽:641
血清抗體檢測方法 瀏覽:667
高層鋼結構安裝採用什麼方法 瀏覽:799
如何避險最有效的方法 瀏覽:387