導航:首頁 > 計算方法 > 7位數乘法計算方法

7位數乘法計算方法

發布時間:2022-05-31 02:01:00

❶ 7個數字4個為一組一共是多少組,例如1234567四個為一組有多少種組合

共有3360個

每4個數就就可以組成四個數字為一組的有1234,2341,3412,4123,……共16個

添上一個數後就有16*5個

再添一個就有16*5*6個

到7,就有16*5*6*7個

所以共有3360個

乘法的計演算法則:

1、首位相同,兩尾數和等於10的兩位數相乘方法: 十位數加1,得出的和與十位數相乘,得數為前積,個位數相乘,得數為後積,沒有十位用0補。

2、首位相同,尾數和不等於10的兩位數相乘方法:兩首位相乘(即求首位的平方),得數作為前積,兩尾數的和與首位相乘,得數作為中積,滿十進一,兩尾數相乘,得數作為後積。

3、被乘數首尾相同,乘數首尾和是10的兩位數相乘方法:乘數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有 十位用0補。

4、被乘數首尾和是10,乘數首尾相同的兩位數相乘方法:與幫助6的方法相似。兩首位相乘的積加上乘數的個位數,得數作為前積,兩尾數相乘,得 數作為後積,沒有十位補0。

❷ 數學乘法技巧

1、十位數相同,個位數互補的兩位數相乘。口訣:十位加1乘以十位,然後個位相乘寫後面(不滿10補0)。
例:86*84=7224
(8+1)*8=72,6*4=24寫後面,即7224。
41*49=2009
(4+1)*4=20,1*9=9,不滿10補0,即09,所以最後結果就是2009。
2、十位數互補,個位數相同的兩位數相乘。口訣:十位相乘加個位,個位相乘寫後面(不滿10補0)。
例:64x44=2816
6×4+4=28,4×4=16寫後面,即2816。
73×33=2409
7×3+3=24,3×3=9,不滿10補0,即09,所以結果就是2409。
同理,51—59的平方也是可以通過這個方法來計算的。比如56的平方等於3136,5×5+6=31,6x6=36,即3136。
3、一個數的十位和個位互補,另一個數相同的兩個數相乘。口訣:互補數的十位加一,和另一個數的高位相乘,後寫兩個個位相乘即最後乘積(不滿10補0)。
例:46x77=3542
(4+1)x7=35,6x7=42寫後面,即3542。
91x33=3003
(9+1)×3=30,1×3=3,不滿10補0,即結果就是3003。
73×66666666=4866666618
(7+1)x6=48,中間六個6不乘照寫,3x6=18寫在後面,就是4866666618,只要一個數的十位和個位互補,不管另一個數是多大相同的,只需要計算最高位和個位就可以了,中間的照抄下來。
4、任何數與11的乘法運算。口訣:從左到右,高位是幾就寫幾,然後兩兩相加依次寫,遇到超過十要進位,最後再把個位寫上即可。
例:32618372x11=358802092
高位是3即寫3,然後依次寫3+2=5,2+6=8,6+1=7,1+8=9,8+3=11(寫1進1,前面9+1變10也要進1,所以7變8,9變0),3+7=10(寫0進1,前面1變2),7+2=9,最後再把個位寫上,就是最後的結果,一定注意進位的操作。
5、十幾與十幾相乘的運算。口訣:一數加上另一數的尾部乘以十,再加上尾數相乘的和就是最後結果。
例:14x13=182
(14+3)×10=170,4×3=12,170+12=182
18x17=306
(18+7)x10=250,8×7=56,250+56=306
同理,求11到19的平方,也可以用這個方法。
6、個位數都是1的乘法運算。口訣:首位相乘的積接上首位之和(不滿10補0),再接上尾數之積。
例:41x31=1271
4×3=12,4+3=7,1x1=1,即1271。
51×81=4131
5×8=40,5+8=13(寫3進1,前面就是41),1x1=1寫後面,就是4131。
7、一百零幾乘以一百零幾。口訣:一個數加上另一個數的尾數,再接上尾數之積(不滿10補0)。
例:103x105=10815
103+5=108,3x5=15,即10815。
102x103=10506
102+3=105,2x3=6,不滿10補0,即10506。
同理,求101到109的平方,也可以用這個方法。比如,108的平方是11664,108+8=116再接上8×8=64,結果就是11664。

❸ 皮得和七位數乘法

1的平方是1
2的平方是4
3的平方是9
所以有3種可能:1010100,2040200,3090300

❹ 七位數乘法豎式如何

七位數乘法豎式

1234567×1234567=1524155677489

豎式見圖:

❺ 誰知道乘法運算的各種技巧

比如:11*11=121之類的

一、乘法速演算法:
特例一:兩位數乘兩位數,只要十位數相同,個位數相加等於10的。都能用這種演算法。只需用十位數乘以比它大一的數,加上後兩位數相乘即可。如果後兩位數相乘只有一位時,前面要補0。如31*39=?先用3乘以比它大一的數4,為12,加上後兩位數相乘1*9=9,只有一位,前面補0,為09,所以 31*39=1209。它的原理是:假若這兩個兩位數分別為ab=10a+b,ac=10a+c,且b+c=10。
則ab*ac=(10a+b)*(10a+c)=100a^2+10a(b+c)+bc=100a^2+100a+bc
=a(a+1)*100+bc,可以看到,只需用十位數a乘以比它大一的數a+1,然後補上兩個位數的乘積bc,即可。
這裡面又有一個特例,凡個位數為5的數的平方的速算。如35的平方,就是3*4=12,後面直接補上25,即得35^2=1225。現在您自己也可試下:95^2=9025。還可推廣到小數,如6.5^2=?先算6*7=42,後面直接補上.25即可。所以6.5^2=42.25。

特例二:求11......1的平方。通常針對9個1以下的數的平方速算。方法是:有幾個1,就由1寫到幾,再由大到小寫到1。比如1111^2 =?有4個1,結果就是1234321。111111=?有六個1,就寫到12345654321。你現在試下11111111^2=?

特例三:求99......9的平方。通常針對9個1以下的數的平方速算。方法是:用平方差公式速算。原理是:a^2=a^2-1+1=(a+ 1)(a-1)+1。描述為:先將此N位數減1,再補上N個0,再加上1,即為所求。所以求999的平方就是:999^2=(999-1)(999+1) +1=998*1000+1=998001。現在您也可以速算99999^2=?了。口中直接說出9999800001。

特例四:四位數9999乘四位數的速算。原理為:9999*abcd=(10000-1)*abcd=abcd0000-abcd=(abcd- 1)*10000+10000-abcd=(abcd-1)*10000+9999-(abcd-1)。所以9999乘四位數的原理是:先將要乘的四位數減1,這是前四位,而後四位再補上9999減去(abcd-1)的差值。這明顯是特例,如將9999換成其它四位數就失效。
····························
二、平方差法:
實例一:359999是合數還是質數?
答:359999是合數。理由如下:
359999
=360000-1
=600^2-1
=(600+1)×(600-1)
=601×599
由於359999可以分解為兩個大於1的正整數相乘,所以它是個合數。
可以看出,直接分解是相當麻煩和困難的。
三、裂項相消法:
實例:1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+…+1/(a+2002)(a+2003)=???
解: 原式=1/a-1/(a+1)+1/(1+a)-1/(a+2)+.....+1/(a+2002)-1/(a+2003)
=1/a-1/(a+2003)
=2003/a(a+2003)
=2003/(a^2+2003a)

❻ 誰有多位數相乘的心算口訣或方法

由速算大師史豐收經過10年鑽研發明的快速計演算法,是直接憑大腦進行運算的方法,又稱為快速心算、快速腦算。這套方法打破人類幾千年從低位算起的傳統方法,運用進位規律,總結26句口訣,由高位算起,再配合指算,加快計算速度,能瞬間運算出正確結果,協助人類開發腦力,加強思維、分析、判斷和解決問題的能力,是當代應用數學的一大創舉。

這一套計演算法,1990年由國家正式命名為「史豐收速演算法」,現已編入中國九年制義務教育《現代小學數學》課本。聯合國教科文組織譽之為教育科學史上的奇跡,應向全世界推廣。
史豐收速演算法的主要特點如下:

⊙從高位算起,由左至右
⊙不用計算工具
⊙不列計算程序
⊙看見算式直接報出正確答案
⊙可以運用在多位數據的加減乘除以及乘方、開方、三角函數、對數等數學運算上

演練實例一

速 算 法 演 練 實 例
Example of Rapid Calculation in Practice
○史豐收速演算法易學易用,演算法是從高位數算起,記著史教授總結了的26句口訣(這些口訣不需死背,而是合乎科學規律,相互連系),用來表示一位數乘多位數的進位規律,掌握了這些口訣和一些具體法則,就能快速進行加、減、乘、除、乘方、開方、分數、函數、對數…等運算。

□本文針對乘法舉例說明
○速演算法和傳統乘法一樣,均需逐位地處理乘數的每位數字,我們把被乘數中正在處理的那個數位稱為「本位」,而從本位右側第一位到最末位所表示的數稱「後位數」。本位被乘以後,只取乘積的個位數,此即「本個」,而本位的後位數與乘數相乘後要進位的數就是「後進」。
○乘積的每位數是由「本個加後進」和的個位數即--

□本位積=(本個十後進)之和的個位數
○那麼我們演算時要由左而右地逐位求本個與後進,然後相加再取其個位數。現在,就以右例具體說明演算時的思維活動。
(例題) 被乘數首位前補0,列出算式:
0847536×2=1695072
乘數為2的進位規律是「2滿5進1」
0×2本個0,後位8,後進1,得1
8×2本個6,後位4,不進,得6
4×2本個8,後位7,滿5進1,
8十1得9
7×2本個4,後位5,滿5進1,
4十1得5
5×2本個0,後位3不進,得0
3×2本個6,後位6,滿5進1,
6十1得7
6×2本個2,無後位,得2

在此我們只舉最簡單的例子供讀者參考,至於乘3、4……至乘9也均有一定的進位規律,限於篇幅,在此未能一一羅列。
「史豐收速演算法」即以這些進位規律為基礎,逐步發展而成,只要運用熟練,舉凡加減乘除四則多位數運算,均可達到快速准確的目的。
>>演練實例二
□掌握訣竅 人腦勝電腦

史豐收速演算法並不復雜,比傳統計演算法更易學、更快速、更准確,史豐收教授說一般人只要用心學習一個月,即可掌握竅門。
對於會計師、經貿人員、科學家們而言,可以提高計算速度,增加工作效益;對學童而言、可以開發智力、活用頭腦、幫助數理能力的增強。

參考資料:http://shifengshou.com/gb/htm/what_shifengshou.htm

❼ 數學中多位數乘法的計算技巧

1,用計算器運算
2,利用分配律和結合律運算
比如79*13=80*13-13
再如63*25=63*4*25/4
3,多運用豎式運算,熟能生巧
4,有一種奇異的線乘法,比如12*15
豎畫 | || 橫畫 | |||||
讓他們相交
斜看有三排交點,第一排是| | 相交,有一個點,記為百位1
第二排分別是 | |||||相交,有五個交點,記為5,和| ||相交,有二個交點記為2,十位就記為5+2=7
個位是|| |||||相交為10個交點,記為0,十位進1
最終的結果就是180

❽ 七位數乘以七位數怎麼心算

總的選擇是盡可能簡化處理,具體要觀察數的特徵而定,不可一概而論。你可以舉個例子再說。

❾ 乘法巧算有哪些方法

十幾乘以十幾是頭乘頭、尾相加、尾相乘。比如12×13=156。而到了二十幾乘以二十n 幾,則任意兩位數乘以任意兩位數,其方法是頭乘頭、尾乘尾、頭乘以後面的尾,尾乘以後 面的頭,兩個得數相加再補加個0。比如:24×25它用2×2=44×5=202×4=82×5= 1010+8=18然後補0也就是180(實際是24×25=420+180=600)
2
/10
不信你試試看!:)
3
/10
一、十位數是1的兩位數相乘
乘數的個位與被乘數相加,得數為前積,乘數的個位與被乘數的個位相乘,得數為後積,滿十前一。
例:15×17
15 + 7 = 22
5 × 7 = 35
---------------
255
即15×17 = 255
解釋:
15×17
=15 ×(10 + 7)
=15 × 10 + 15 × 7
=150 + (10 + 5)× 7
=150 + 70 + 5 × 7
=(150 + 70)+(5 × 7)
為了提高速度,熟練以後可以直接用「15 + 7」,而不用「150 + 70」。兩位數乘法的巧算技巧
例:17 × 19
17 + 9 = 26
7 × 9 = 63
連在一起就是255,即260 + 63 = 323
4
/10
二、個位是1的兩位數相乘
方法:十位與十位相乘,得數為前積,十位與十位相加,得數接著寫,滿十進一,在最後添上1。
例:51 × 31
50 × 30 = 1500
50 + 30 = 80
------------------
1580
因為1 × 1 = 1 ,所以後一位一定是1,在得數的後面添上1,即1581。數字「0」在不熟練的時候作為助記符,熟練後就可以不使用了。兩位數乘法的巧算技巧
例:81 × 91
80 × 90 = 7200
80 + 90 = 170
------------------
7370
1
------------------
7371
原理大家自己理解就可以了。兩位數乘法的巧算技巧
5
/10
三、十位相同個位不同的兩位數相乘
被乘數加上乘數個位,和與十位數整數相乘,積作為前積,個位數與個位數相乘作為後積加上去。
例:43 × 46
(43 + 6)× 40 = 1960
3 × 6 = 18
----------------------
1978
例:89 × 87
(89 + 7)× 80 = 7680
9 × 7 = 63
----------------------
7743
6
/10
四、首位相同,兩尾數和等於10的兩位數相乘兩位數乘法的巧算技巧
十位數加1,得出的和與十位數相乘,得數為前積,個位數相乘,得數為後積,沒有十位用0補。

❿ 誰知道多位數乘法的快速計算方法

多位數乘法的快速計算方法如下:

1、十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。

2、頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。

3、第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。

4、幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861

5、11乘任意數:口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。

6、十幾乘任意數:口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一 個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
註:和滿十要進一。

閱讀全文

與7位數乘法計算方法相關的資料

熱點內容
數據驅動的決策方法研究 瀏覽:412
干蒜瓣怎麼腌制方法大全 瀏覽:618
數字電子設計教學方法 瀏覽:742
華為拍照照片在哪裡設置方法 瀏覽:227
大米枇杷粥的食用方法 瀏覽:335
李子園施肥方法視頻 瀏覽:580
恐懼症治療好的方法是什麼 瀏覽:144
蟲百敵的使用方法 瀏覽:673
握拳的公式方法有哪些 瀏覽:420
荷花家庭種植方法 瀏覽:514
非洲菊怎麼插花方法 瀏覽:83
夏季風熱感冒的治療方法 瀏覽:658
韓國sk投影儀使用方法 瀏覽:409
動物基因檢測的方法 瀏覽:766
消消樂837關怎麼過方法 瀏覽:393
泰國去黑頭水使用方法 瀏覽:742
基礎試驗檢測方法 瀏覽:945
分析化學中數理統計方法 瀏覽:499
安卓手機自動切換wifi設置方法 瀏覽:323
腿部拉伸方法簡單 瀏覽:469