Ⅰ 怎樣測量可控硅
可控硅的測量方法
一、概述
一種以硅單晶為基本材料的P1N1P2N2四層三端器件,創制於1957年,由於它特性類似於真空閘流管,所以國際上通稱為硅晶體閘流管,簡稱晶閘管T。又由於晶閘管最初應用於可控整流方面所以又稱為硅可控整流元件,簡稱為可控硅SCR。
在性能上,可控硅不僅具有單向導電性,而且還具有比硅整流元件(谷稱「死硅」)更為可貴的可控性。它只有導通和關斷兩種狀態。
可控硅能以毫安級電流控制大功率的機電設備,如果超過此頻率,因元件開關損髦顯著增加,允許通過的平均電流相降低,此時,標稱電流應降級使用。
可控硅的優點很多,例如:以小功率控制大功率,功率放大倍數高達幾十萬倍;反應極快,在微秒級內開通、關斷;無觸點運行,無火花、無噪音;效率高,成本低等等。
可控硅的弱點:靜態及動態的過載能力較差;容易受干擾而誤導通。
可控硅從外形上分類主要有:螺栓形、平板形和平底形。
二、可控硅元件的結構和型號
1、結構
不管可控硅的外形如何,它們的管芯都是由P型硅和N型硅組成的四層P1N1P2N2結構。見圖1。它有三個PN結(J1、J2、J3),從J1結構的P1層引出陽極A,從N2層引出陰級K,從P2層引出控制極G,所以它是一種四層三端的半導體器件
圖1、可控硅結構示意圖和符號圖
2、型號
目前國產可控硅的型號有部頒新、舊標准兩種,新型號將逐步取代舊型號。
表一 KP型可控硅新舊標准主要特性參數對照表
參數部頒新標准(JB1144-75)部頒舊標准(JB1144-71)
序號KP型右控硅整流元件3CT系列可控硅整流元件
1額定通態平均電流(IT(AV))額定正向平均值電流(IF)
2斷態重復峰值電壓(UDRM)正向阻斷峰值電壓(UPF)
3反向重復峰值電壓(URRM)反向峰值電壓(VPR)
4斷態重復平均電流(IDR(AV))正向平均漏電流(I)
5反向重復平均電流(IRR(AV))反向平均漏電電流(IRL)
6通態平均電壓(UT(AV))最大正向平均電壓降(VF)
7門極觸發電流(IGT)控制極觸發電流(Ig)
8門極觸發電壓(UGT)控制極觸發電壓(Vg)
9斷態電壓臨界上升率(/dt)極限正向電壓上升率(dV/dt)
10維持電流(IH)維持電流(IH)
11額定結溫(TjM)額定工作結溫(Tj)
KP型可控硅的電流電壓級別見表二
表二、KP型可控硅電流電壓級別
額定通態平均
電流IT(AV)(A)1,5,10,20,30,50,100,200,300,400,500,600,700,800,100
正反向重復
峰值電壓UDRM,
URRM(×100)(V)1~10,12,14,16,18,20,22,24,26,,28,30
通態平均電壓
UT(AV)(V) ABCDEFGHI
≤0.40.4~0.50.5~0.60.6~0.70.7~0.80.8~0.90.9~1.01.0~1.11.1~1,2
示例:
(1)KP5-10表示通態平均電流5安,正向重復峰值電壓1000伏的普通反向阻斷型可控硅元件。
(2)KP500-12D表示通態平均電流500安,正、反向重復峰值電壓1200伏,通態平均電壓0.7伏的業通反向阻斷型可控硅元件。
(3)3CT5/600表示通態平均電流5安,正、反向重復峰值電壓600伏的舊型號普通可控硅元件。
三、可控硅元件的工作原理及基本特性
1、工作原理
可控硅是P1N1P2N2四層三端結構元件,共有三個PN結,分析原理時,可以把它看作由一個PNP管和一個NPN管所組成,其等效圖解如圖2所示
圖2、可控硅等效圖解圖
當陽極A加上正向電壓時,BG1和BG2管均處於放大狀態。此時,如果從控制極G輸入一個正向觸發信號,BG2便有基流ib2流過,經BG2放大,其集電極電流ic2=β2ib2。因為BG2的集電極直接與BG1的基極相連,所以ib1=ic2。此時,電流ic2再經BG1放大,於是BG1的集電極電流ic1=β1ib1=β1β2ib2。這個電流又流回到BG2的基極,表成正反饋,使ib2不斷增大,如此正向饋循環的結果,兩個管子的電流劇增,可控硅使飽和導通。
由於BG1和BG2所構成的正反饋作用,所以一旦可控硅導通後,即使控制極G的電流消失了,可控硅仍然能夠維持導通狀態,由於觸發信號只起觸發作用,沒有關斷功能,所以這種可控硅是不可關斷的。
由於可控硅只有導通和關斷兩種工作狀態,所以它具有開關特性,這種特性需要一定的條件才能轉化,此條件見表三
表三、可控硅導通和關斷條件
狀態條件說明
從關斷到導通1、陽極電位高於是陰極電位
2、控制極有足夠的正向電壓和電流兩者缺一不可
維持導通1、陽極電位高於陰極電位
2、陽極電流大於維持電流兩者缺一不可
從導通到關斷1、陽極電位低於陰極電位
2、陽極電流小於維持電流任一條件即可
2、基本伏安特性
可控硅的基本伏安特性見圖3
圖3、可控硅基本伏安特性
(1)反向特性 當控制極開路,陽極加上反向電壓時(見圖4),J2結正偏,但J1、J2結反偏。此時只能流過很小的反向飽和電流,當電壓進一步提高到J1結的雪崩擊穿電壓後,接差J3結也擊穿,電流迅速增加,圖3的特性開始彎曲,如特性OR段所示,彎曲處的電壓URO叫「反向轉折電壓」。此時,可控硅會發生永久性反向擊穿。
(2)正向特性 當控制極開路,陽極上加上正向電壓時(見圖5),J1、J3結正偏,但J2結反偏,這與普通PN結的反向特性相似,也只能流過很小電流,這叫正向阻斷狀態,當電壓增加,圖3的特性發生了彎曲,如特性OA段所示,彎曲處的是UBO叫:正向轉折電壓
圖4、陽極加反向電壓
圖5、陽極加正向電壓
由於電壓升高到J2結的雪崩擊穿電壓後,J2結發生雪崩倍增效應,在結區產生大量的電子和空穴,電子時入N1區,空穴時入P2區。進入N1區的電子與由P1區通過J1結注入N1區的空穴復合,同樣,進入P2區的空穴與由N2區通過J3結注入P2區的電子復合,雪崩擊穿,進入N1區的電子與進入P2區的空穴各自不能全部復合掉,這樣,在N1區就有電子積累,在P2區就有空穴積累,結果使P2區的電位升高,N1區的電位下降,J2結變成正偏,只要電流稍增加,電壓便迅速下降,出現所謂負阻特性,見圖3的虛線AB段。
這時J1、J2、J3三個結均處於正偏,可控硅便進入正向導電狀態---通態,此時,它的特性與普通的PN結正向特性相似,見圖3中的BC段
3、觸發導通
在控制極G上加入正向電壓時(見圖6)因J3正偏,P2區的空穴時入N2區,N2區的電子進入P2區,形成觸發電流IGT。在可控硅的內部正反饋作用(見圖2)的基礎上,加上IGT的作用,使可控硅提前導通,導致圖3的伏安特性OA段左移,IGT越大,特性左移越快。
圖6、陽極和控制極均加正向電壓
怎樣用萬用表測量可控硅的各電極
1.單向可控硅的檢測
萬用表選用電阻R×1檔,用紅黑兩表筆分別測任意兩引腳間正反向電阻直至找出讀數為數十歐姆的一對引腳,此時黑筆接的引腳為控制極G,紅筆接的引腳為陰極K,另一空腳為陽極A。此時將黑表筆接已判斷了的陽極A,紅表筆仍接陰極K。此時萬用表指針應不動。用短接線瞬間短接陽極A和控制極G,此時萬用表指針應向右偏轉,阻值讀數為10歐姆左右。如陽極A接黑表筆,陰極K接紅表筆時,萬用表指針發生偏轉,說明該單向可控硅已擊穿損壞。
2.雙向可控硅的檢測
用萬用表電阻R×1檔,用紅黑兩表筆分別測任意兩引腳正反向電阻,結果其中兩組讀數為無窮大。若一組為數十歐姆時,該組紅黑表筆所接的兩引腳為第一陽極A1和控制極G,另一空腳即為第二陽極A2。確定A、G極後,再仔細測量A1、G極間正反向電阻,讀數相對較小的那次測量的黑表筆所接的引腳為第一陽極A1,紅表筆所接引腳為控制極G。將黑表筆接已確定了的第二陽極A2,紅表筆接第一陽極A1,此時萬用表指針應不發生偏轉,阻值為無窮大。再用短接線將A2、G極瞬間短接,給G極加上正向觸發電壓,A2、A1間阻值約為10歐姆左右。隨後斷開A2、G極短接線,萬用表讀數應保持10歐姆左右。互換紅黑表筆接線,紅表筆接第二陽極A2,黑表筆接第一陽極A1。同樣萬用表指針應不發生偏轉,阻值為無窮大。用短接線將A2、G極間再次瞬間短接,給G極加上負向的觸發電壓,A1、A2間阻值也是10歐姆左右。隨後斷開A2、G極間短接線,萬用表讀數應不變,保持10歐姆左右。符合以上規律,說明被測雙向可控硅管未損壞且三個引腳極性判斷正確。
檢測較大功率可控硅管,需要在萬用表黑筆中串接一節1.5V干電池,以提高觸發電壓。
Ⅱ 可控硅BCR50GM怎麼測量好壞
可控硅在自動控制控制,機電領域,工業電氣及家電等方面都有廣泛的應用。可控硅是一種有源開關元件,平時它保持在非道通狀態,直到由一個較少的控制信號對其觸發或稱「點火」使其道通,一旦被點火就算撤離觸發信號它也保持道通狀態,要使其截止可在其陽極與陰極間加上反向電壓或將流過可控硅二極體的電流減少到某一個值以下。
可控硅二極體可用兩個不同極性(P-N-P和N-P-N)晶體管來模擬,如圖G1所示。當可控硅的柵極懸空時,BG1和BG2都處於截止狀態,此時電路基本上沒有電流流過負載電阻RL,當柵極輸入一個正脈沖電壓時BG2道通,使BG1的基極電位下降,BG1因此開始道通,BG1的道通使得BG2的基極電位進一步升高,BG1的基極電位進一步下降,經過這一個正反饋過程使BG1和BG2進入飽和道通狀態。電路很快從截止狀態進入道通狀態,這時柵極就算沒有觸發脈沖電路由於正反饋的作用將保持道通狀態不變。如果此時在陽極和陰極加上反向電壓,由於BG1和BG2均處於反向偏置狀態所以電路很快截止,另外如果加大負載電阻RL的阻值使電路電流減少BG1和BG2的基電流也將減少,當減少到某一個值時由於電路的正反饋作用,電路將很快從道通狀態翻轉為截止狀態,我們稱這個電流為維持電流。在實際應用中,我們可通過一個開關來短路可控硅的陽極和陰極從而達到可控硅的關斷。
應用舉例
可控硅在實際應用中電路花樣最多的是其柵極觸發迴路,概括起來有直流觸發電路,交流觸發電路,相位觸發電路等等。
1。直流觸發電路:如圖G2是一個電視機常用的過壓保護電路,當E+電壓過高時A點電壓也變高,當它高於穩壓管DZ的穩壓值時DZ道通,可控硅D受觸發而道通將E+短路,使保險絲RJ熔斷,從而起到過壓保護的作用。
2。相位觸發電路:相位觸發電路實際上是交流觸發電路的一種,如圖G3,這個電路的方法是利用RC迴路控制觸發信號的相位。當R值較少時,RC時間常數較少,觸發信號的相移A1較少,因此負載獲得較大的電功率;當R值較大時,RC時間常數較大,觸發信號的相移A2較大,因此負載獲得較少的電功率。這個典型的電功率無級調整電路在日常生活中有很多電氣產品中都應用它。
Ⅲ 我想知道可控硅如何辨認如何測量它的好壞還有它的工作原理是
可控硅原理及特性
可控硅的原理及特性:標準的雙向可控硅既可被柵極的正向電流觸發,也能被柵極的反向電流觸發,它可以在四個象限內導通。當柵極電壓達到門限值VGT且柵電流達到門限值IGT時,可控硅被觸發導通。當觸發電流的脈寬較窄時,則應提高觸發電平。當負載電流超過可控硅的閂電流IL時,即使此時的柵電流減為零,可控硅仍能維持導通狀態。在負載電流為零時,最好用反相的直流或單極性脈沖的(柵極)電流觸發。
下面介紹利用萬用表RXl檔判定雙向可控硅電極的方法,同時還檢查觸發能力。
1.判定T2極
由圖2可見,G極與T1極靠近,距T2極較遠。因此,G—T1之間的正、反向電阻都很小。在肦Xl檔測任意兩腳之間的電阻時,只有在G-T1之間呈現低阻,正、反向電阻僅幾十歐,而T2-G、T2-T1之間的正、反向電阻均為無窮大。這表明,如果測出某腳和其他兩腳都不通,就肯定是T2極。,另外,採用TO—220封裝的雙向可控硅,T2極通常與小散熱板連通,據此亦可確定T2極。
2.區分G極和T1極
(1)找出T2極之後,首先假定剩下兩腳中某一腳為Tl極,另一腳為G極。
(2)把黑表筆接T1極,紅表筆接T2極,電阻為無窮大。接著用紅表筆尖把T2與G短路,給G極加上負觸發信號,電阻值應為十歐左右(參見圖4(a)),證明管子已經導通,導通方向為T1一T2。再將紅表筆尖與G極脫開(但仍接T2),若電阻值保持不變,證明管子在觸發之後能維持導通狀態(見圖4(b))。
(3)把紅表筆接T1極,黑表筆接T2極,然後使T2與G短路,給G極加上正觸發信號,電阻值仍為十歐左右,與G極脫開後若阻值不變,則說明管子經觸發後,在T2一T1方向上也能維持導通狀態,因此具有雙向觸發性質。由此證明上述假定正確。否則是假定與實際不符,需再作出假定,重復以上測量。顯見,在識別G、T1,的過程中,也就檢查了雙向可控硅的觸發能力。如果按哪種假定去測量,都不能使雙向可控硅觸發導通,證明管於巳損壞。對於lA的管子,亦可用RXl0檔檢測,對於3A及3A以上的管子,應選RXl檔,否則難以維持導通狀態。
典型應用
雙向可控硅可廣泛用於工業、交通、家用電器等領域,實現交流調壓、電機調速、交流開關、路燈自動開啟與關閉、溫度控制、台燈調光、舞台調光等多種功能,它還被用於固態繼電器(SSR)和固態接觸器電路中。圖5是由雙向可控硅構成的接近開關電路。R為門極限流電阻,JAG為乾式舌簧管。平時JAG斷開,雙向可控硅TRIAC也關斷。僅當小磁鐵移近時JAG吸合,使雙向可控硅導通,將負載電源接通。由於通過干簧管的電流很小,時間僅幾微秒,所以開關的壽命很長.
,想了解更多的可控硅知識可以在我的個人簡介里找網站
Ⅳ 可控硅如何測試
①、關於以上這可控硅如何測試問題請見以下圖片內容,但你也可以手機掃一下二維碼,即可看到視頻測量的,僅供參考!
Ⅳ 如何測量可控硅的好壞
1. 單向可控硅的檢測:
萬用表選電阻R*1Ω擋,用紅、黑兩表筆分別測任意兩引腳間正反向電阻直至找出讀數為數十歐姆的一對引腳,此時黑表筆的引腳為控制極G,紅表筆的引腳為陰極K,另一空腳為陽極A。此時將黑表筆接已判斷了的陽極A,紅表筆仍接陰極K。
2. 雙向可控硅的檢測:
用萬用表電阻R*1Ω擋,用紅、黑兩表筆分別測任意兩引腳間正反向電阻,結果其中兩組讀數為無窮大。若一組為數十歐姆時,該組紅、黑表所接的兩引腳為第一陽極A1和控制極G,另一空腳即為第二陽極A2。
確定A1、G極後,再仔細測量A1、G極間正、反向電阻,讀數相對較小的那次測量的黑表筆所接的引腳為第一陽極A1,紅表筆所接引腳為控制極G。
可控硅的主要參數有:
1、 額定通態平均電流IT 在一定條件下,陽極---陰極間可以連續通過的50赫茲正弦半波電流的平均值。
2、 正向阻斷峰值電壓VPF 在控制極開路未加觸發信號,陽極正向電壓還未超過導能電壓時,可以重復加在可控硅兩端的正向峰值電壓。可控硅承受的正向電壓峰值,不能超過手冊給出的這個參數值。
3、 反向阻斷峰值電壓VPR 當可控硅加反向電壓,處於反向關斷狀態時,可以重復加在可控硅兩端的反向峰值電壓。使用時,不能超過手冊給出的這個參數值。
4、 觸發電壓VGT 在規定的環境溫度下,陽極---陰極間加有一定電壓時,可控硅從關斷狀態轉為導通狀態所需要的最小控制極電流和電壓。
5、 維持電流IH 在規定溫度下,控制極斷路,維持可控硅導通所必需的最小陽極正向電流。許多新型可控硅元件相繼問世,如適於高頻應用的快速可控硅,可以用正或負的觸發信號控制兩個方向導通的雙向可控硅,可以用正觸發信號使其導通,用負觸發信號使其關斷的可控硅等等。
Ⅵ 怎樣檢測可控硅模塊
一、用指針式萬用表對場效應管進行判別(1)用測電阻法判別結型場效應管的電極根據場效應管的PN結正、反向電阻值不一樣的現象,可以判別出結型場效應管的三個電極。具體方法:將萬用表撥在R×1k檔上,任選兩個電極,分別測出其正、反向電阻值。當某兩個電極的正、反向電阻值相等,且為幾千歐姆時,則該兩個電極分別是漏極D和源極S。因為對結型場效應管而言,漏極和源極可互換,剩下的電極肯定是柵極G。也可以將萬用表的黑表筆(紅表筆也行)任意接觸一個電極,另一隻表筆依次去接觸其餘的兩個電極,測其電阻值。當出現兩次測得的電阻值近似相等時,則黑表筆所接觸的電極為柵極,其餘兩電極分別為漏極和源極。若兩次測出的電阻值均很大,說明是PN結的反向,即都是反向電阻,可以判定是N溝道場效應管,且黑表筆接的是柵極;若兩次測出的電阻值均很小,說明是正向PN結,即是正向電阻,判定為P溝道場效應管,黑表筆接的也是柵極。若不出現上述情況,可以調換黑、紅表筆按上述方法進行測試,直到判別出柵極為止。(2)用測電阻法判別場效應管的好壞測電阻法是用萬用表測量場效應管的源極與漏極、柵極與源極、柵極與漏極、柵極G1與柵極G2之間的電阻值同場效應管手冊標明的電阻值是否相符去判別管的好壞。具體方法:首先將萬用表置於R×10或R×100檔,測量源極S與漏極D之間的電阻,通常在幾十歐到幾千歐范圍(在手冊中可知,各種不同型號的管,其電阻值是各不相同的),如果測得阻值大於正常值,可能是由於內部接觸不良;如果測得阻值是無窮大,可能是內部斷極。然後把萬用表置於R×10k檔,再測柵極G1與G2之間、柵極與源極、柵極與漏極之間的電阻值,當測得其各項電阻值均為無窮大,則說明管是正常的;若測得上述各阻值太小或為通路,則說明管是壞的。要注意,若兩個柵極在管內斷極,可用元件代換法進行檢測。(3)用感應信號輸人法估測場效應管的放大能力具體方法:用萬用表電阻的R×100檔,紅表筆接源極S,黑表筆接漏極D,給場效應管加上1.5V的電源電壓,此時表針指示出的漏源極間的電阻值。然後用手捏住結型場效應管的柵極G,將人體的感應電壓信號加到柵極上。這樣,由於管的放大作用,漏源電壓VDS和漏極電流Ib都要發生變化,也就是漏源極間電阻發生了變化,由此可以觀察到表針有較大幅度的擺動。如果手捏柵極表針擺動較小,說明管的放大能力較差;表針擺動較大,表明管的放大能力大;若表針不動,說明管是壞的。根據上述方法,我們用萬用表的R×100檔,測結型場效應管3DJ2F。先將管的G極開路,測得漏源電阻RDS為600Ω,用手捏住G極後,表針向左擺動,指示的電阻RDS為12kΩ,表針擺動的幅度較大,說明該管是好的,並有較大的放大能力。運用這種方法時要說明幾點:首先,在測試場效應管用手捏住柵極時,萬用表針可能向右擺動(電阻值減小),也可能向左擺動(電阻值增加)。這是由於人體感應的交流電壓較高,而不同的場效應管用電阻檔測量時的工作點可能不同(或者工作在飽和區或者在不飽和區)所致,試驗表明,多數管的RDS增大,即表針向左擺動;少數管的RDS減小,使表針向右擺動。但無論表針擺動方向如何,只要表針擺動幅度較大,就說明管有較大的放大能力。第二,此方法對MOS場效應管也適用。但要注意,MOS場效應管的輸人電阻高,柵極G允許的感應電壓不應過高,所以不要直接用手去捏柵極,必須用於握螺絲刀的絕緣柄,用金屬桿去碰觸柵極,以防止人體感應電荷直接加到柵極,引起柵極擊穿。第三,每次測量完畢,應當G-S極間短路一下。這是因為G-S結電容上會充有少量電荷,建立起VGS電壓,造成再進行測量時表針可能不動,只有將G-S極間電荷短路放掉才行。(4)用測電阻法判別無標志的場效應管首先用測量電阻的方法找出兩個有電阻值的管腳,也就是源極S和漏極D,餘下兩個腳為第一柵極G1和第二柵極G2。把先用兩表筆測的源極S與漏極D之間的電阻值記下來,對調表筆再測量一次,把其測得電阻值記下來,兩次測得阻值較大的一次,黑表筆所接的電極為漏極D;紅表筆所接的為源極S。用這種方法判別出來的S、D極,還可以用估測其管的放大能力的方法進行驗證,即放大能力大的黑表筆所接的是D極;紅表筆所接地是8極,兩種方法檢測結果均應一樣。當確定了漏極D、源極S的位置後,按D、S的對應位置裝人電路,一般G1、G2也會依次對准位置,這就確定了兩個柵極G1、G2的位置,從而就確定了D、S、G1、G2管腳的順序。(5)用測反向電阻值的變化判斷跨導的大小對VMOS N溝道增強型場效應管測量跨導性能時,可用紅表筆接源極S、黑表筆接漏極D,這就相當於在源、漏極之間加了一個反向電壓。此時柵極是開路的,管的反向電阻值是很不穩定的。將萬用表的歐姆檔選在R×10kΩ的高阻檔,此時表內電壓較高。當用手接觸柵極G時,會發現管的反向電阻值有明顯地變化,其變化越大,說明管的跨導值越高;如果被測管的跨導很小,用此法測時,反向阻值變化不大。二、.場效應管的使用注意事項(1)為了安全使用場效應管,在線路的設計中不能超過管的耗散功率,最大漏源電壓、最大柵源電壓和最大電流等參數的極限值。(2)各類型場效應管在使用時,都要嚴格按要求的偏置接人電路中,要遵守場效應管偏置的極性。如結型場效應管柵源漏之間是PN結,N溝道管柵極不能加正偏壓;P溝道管柵極不能加負偏壓,等等。(3)MOS場效應管由於輸人阻抗極高,所以在運輸、貯藏中必須將引出腳短路,要用金屬屏蔽包裝,以防止外來感應電勢將柵極擊穿。尤其要注意,不能將MOS場效應管放人塑料盒子內,保存時最好放在金屬盒內,同時也要注意管的防潮。(4)為了防止場效應管柵極感應擊穿,要求一切測試儀器、工作台、電烙鐵、線路本身都必須有良好的接地;管腳在焊接時,先焊源極;在連入電路之前,管的全部引線端保持互相短接狀態,焊接完後才把短接材料去掉;從元器件架上取下管時,應以適當的方式確保人體接地如採用接地環等;當然,如果能採用先進的氣熱型電烙鐵,焊接場效應管是比較方便的,並且確保安全;在未關斷電源時,絕對不可以把管插人電路或從電路中拔出。以上安全措施在使用場效應管時必須注意。(5)在安裝場效應管時,注意安裝的位置要盡量避免靠近發熱元件;為了防管件振動,有必要將管殼體緊固起來;管腳引線在彎曲時,應當大於根部尺寸5毫米處進行,以防止彎斷管腳和引起漏氣等。對於功率型場效應管,要有良好的散熱條件。因為功率型場效應管在高負荷條件下運用,必須設計足夠的散熱器,確保殼體溫度不超過額定值,使器件長期穩定可靠地工作。總之,確保場效應管安全使用,要注意的事項是多種多樣,採取的安全措施也是各種各樣,廣大的專業技術人員,特別是廣大的電子愛好者,都要根據自己的實際情況出發,採取切實可行的辦法,安全有效地用好場效應管。三.VMOS場效應管VMOS場效應管(VMOSFET)簡稱VMOS管或功率場效應管,其全稱為V型槽MOS場效應管。它是繼MOSFET之後新發展起來的高效、功率開關器件。它不僅繼承了MOS場效應管輸入阻抗高(≥108W)、驅動電流小(0.1μA左右),還具有耐壓高(最高1200V)、工作電流大(1.5A~100A)、輸出功率高(1~250W)、跨導的線性好、開關速度快等優良特性。正是由於它將電子管與功率晶體管之優點集於一身,因此在電壓放大器(電壓放大倍數可達數千倍)、功率放大器、開關電源和逆變器中正獲得廣泛應用。VMOS場效應功率管具有極高的輸入阻抗及較大的線性放大區等優點,尤其是其具有負的電流溫度系數,即在柵-源電壓不變的情況下,導通電流會隨管溫升高而減小,故不存在由於「二次擊穿」現象所引起的管子損壞現象。因此,VMOS管的並聯得到廣泛應用。眾所周知,傳統的MOS場效應管的柵極、源極和漏極大大致處於同一水平面的晶元上,其工作電流基本上是沿水平方向流動。VMOS管則不同,從圖1上可以看出其兩大結構特點:第一,金屬柵極採用V型槽結構;第二,具有垂直導電性。由於漏極是從晶元的背面引出,所以ID不是沿晶元水平流動,而是自重摻雜N+區(源極S)出發,經過P溝道流入輕摻雜N-漂移區,最後垂直向下到達漏極D。電流方向如圖中箭頭所示,因為流通截面積增大,所以能通過大電流。由於在柵極與晶元之間有二氧化硅絕緣層,因此它仍屬於絕緣柵型MOS場效應管。國內生產VMOS場效應管的主要廠家有877廠、天津半導體器件四廠、杭州電子管廠等,典型產品有VN401、VN672、VMPT2等。下面介紹檢測VMOS管的方法。1.判定柵極G將萬用表撥至R×1k檔分別測量三個管腳之間的電阻。若發現某腳與其字兩腳的電阻均呈無窮大,並且交換表筆後仍為無窮大,則證明此腳為G極,因為它和另外兩個管腳是絕緣的。2.判定源極S、漏極D由圖1可見,在源-漏之間有一個PN結,因此根據PN結正、反向電阻存在差異,可識別S極與D極。用交換表筆法測兩次電阻,其中電阻值較低(一般為幾千歐至十幾千歐)的一次為正向電阻,此時黑表筆的是S極,紅表筆接D極。3.測量漏-源通態電阻RDS(on)將G-S極短路,選擇萬用表的R×1檔,黑表筆接S極,紅表筆接D極,阻值應為幾歐至十幾歐。由於測試條件不同,測出的RDS(on)值比手冊中給出的典型值要高一些。例如用500型萬用表R×1檔實測一隻IRFPC50型VMOS管,RDS(on)=3.2W,大於0.58W(典型值)。4.檢查跨導將萬用表置於R×1k(或R×100)檔,紅表筆接S極,黑表筆接D極,手持螺絲刀去碰觸柵極,表針應有明顯偏轉,偏轉愈大,管子的跨導愈高。注意事項:(1)VMOS管亦分N溝道管與P溝道管,但絕大多數產品屬於N溝道管。對於P溝道管,測量時應交換表筆的位置。(2)有少數VMOS管在G-S之間並有保護二極體,本檢測方法中的1、2項不再適用。(3)目前市場上還有一種VMOS管功率模塊,專供交流電機調速器、逆變器使用。例如美國IR公司生產的IRFT001型模塊,內部有N溝道、P溝道管各三隻,構成三相橋式結構。(4)現在市售VNF系列(N溝道)產品,是美國Supertex公司生產的超高頻功率場效應管,其最高工作頻率fp=120MHz,IDSM=1A,PDM=30W,共源小信號低頻跨導gm=2000μS。適用於高速開關電路和廣播、通信設備中。(5)使用VMOS管時必須加合適的散熱器後。以VNF306為例,該管子加裝140×140×4(mm)的散熱器後,最大功率才能達到30W。(6)多管並聯後,由於極間電容和分布電容相應增加,使放大器的高頻特性變壞,通過反饋容易引起放大器的高頻寄生振盪。為此,並聯復合管管子一般不超過4個,而且在每管基極或柵極上串接防寄生振盪電阻。
Ⅶ 雙向可控硅在現實電路中怎麼測試好壞
對於雙向可控硅,閉合開關K,燈應發亮,斷開K,燈應不息滅。然後將電池反接,重復上述步驟,均應是同一結果,才說明是好的。否則說明該器件已損壞。
先任測兩個極,若正、反測指針均不動(R&TImes;1擋),可能是A、K或G、A極(對單向可控硅)也可能是T2、T1或T2、G極(對雙向可控硅)。
若其中有一次測量指示為幾十至幾百歐,則必為單向可控硅。且紅筆所接為K極,黑筆接的為G極,剩下即為A極。若正、反向測批示均為幾十至幾百歐,則必為雙向可控硅。
(7)晶體可控硅測量方法擴展閱讀
1、雙向可控硅是一種功率半導體器件,也稱雙向晶閘管,在單片機控制系統中,可作為功率驅動器件。
2、雙向可控硅接通的一般都是一些功率較大的用電器,且連接在強電網路中,其觸發電路的抗干擾問題很重要,通常都是通過光電耦合器將單片機控制系統中的觸發信號載入到可控硅的控制極。
3、雙向可控硅屬於NPNPN五層器件,三個電極分別是T1、T2、G。從形式上可將雙向可控硅看成兩只普通可控硅的組合,但實際上它是由7隻晶體管和多隻電阻構成的功率集成器件。
Ⅷ 有誰知道如何用數字萬用表測試單身可控硅的三個引腳及好壞
一、單向可控硅工作原理
可控硅導通條件:一是可控硅陽極與陰極間必須加正向電壓,二是控制極也要加正向電壓。以上兩個條件必須同時具備,可控硅才會處於導通狀態。另外,可控硅一旦導通後,即使降低控制極電壓或去掉控制極電壓,可控硅仍然導通。
可控硅關斷條件:降低或去掉加在可控硅陽極至陰極之間的正向電壓,使陽極電流小於最小維持電流以下。
二、單向可控硅的引腳區分
對可控硅的引腳區分,有的可從外形封裝加以判別,如外殼就為陽極,陰極引線比控制極引線長。從外形無法判斷的可控硅,可用萬用表R×100或R×1K擋,測量可控硅任意兩管腳間的正反向電阻,當萬用表指示低阻值(幾百歐至幾千歐的范圍)時,黑表筆所接的是控制極G,紅表筆所接的是陰極C,餘下的一隻管腳為陽極A。
三、單向可控硅的性能檢測
可控硅質量好壞的判別可以從四個方面進行。第一是三個PN結應完好;第二是當陰極與陽極間電壓反向連接時能夠阻斷,不導通;第三是當控制極開路時,陽極與陰極間的電壓正向連接時也不導通;第四是給控制極加上正向電流,給陰極與陽極加正向電壓時,可控硅應當導通,把控制極電流去掉,仍處於導通狀態。
用萬用表的歐姆擋測量可控硅的極間電阻,就可對前三個方面的好壞進行判斷。具體方法是:用R×1k或R×10k擋測陰極與陽極之間的正反向電阻(控制極不接電壓),此兩個阻值均應很大。電阻值越大,表明正反向漏電電流愈小。如果測得的阻值很低,或近於無窮大,說明可控硅已經擊穿短路或已經開路,此可控硅不能使用了。
用R×1k或R×10k擋測陽極與控制極之間的電阻,正反向測量阻值均應幾百千歐以上,若電阻值很小表明可控硅擊穿短路。
用R×1k或R×100擋,測控制極和陰極之間的PN結的正反向電阻在幾千歐左右,如出現正向阻值接近於零值或為無窮大,表明控制極與陰極之間的PN結已經損壞。反向阻值應很大,但不能為無窮大。正常情況是反向阻值明顯大於正向阻值。
萬用表選電阻R×1擋,將黑表筆接陽極,紅表筆仍接陰極,此時萬用表指針應不動。紅表筆接陰極不動,黑表筆在不脫開陽極的同時用表筆尖去瞬間短接控制極,此時萬用表電阻擋指針應向右偏轉,阻值讀數為10歐姆左右。如陽極接黑表筆,陰極接紅表筆時,萬用表指針發生偏轉,說明該單向可控硅已擊穿損壞。
四、可控硅的使用注意事項
選用可控硅的額定電壓時,應參考實際工作條件下的峰值電壓的大小,並留出一定的餘量。
1、選用可控硅的額定電流時,除了考慮通過元件的平均電流外,還應注意正常工作時導通角的大小、散熱通風條件等因素。在工作中還應注意管殼溫度不超過相應電流下的允許值。
2、使用可控硅之前,應該用萬用表檢查可控硅是否良好。發現有短路或斷路現象時,應立即更換。
3、嚴禁用兆歐表(即搖表)檢查元件的絕緣情況。
4、電流為5A以上的可控硅要裝散熱器,並且保證所規定的冷卻條件。為保證散熱器與可控硅管心接觸良好,它們之間應塗上一薄層有機硅油或硅脂,以幫於良好的散熱。
5、按規定對主電路中的可控硅採用過壓及過流保護裝置。
6、要防止可控硅控制極的正向過載和反向擊穿。
Ⅸ 什麼是可控硅,如何識別可控硅
可控硅就是可控二極體
數字表更好使啊,不是專門有測晶體管的當嗎?^_^^_^^_^
一般觸發腳較其他兩腳細,用表筆測其他兩腳,應該不通,在慢慢旋轉可控硅,使觸發端接觸表筆,如果顯示不變,兩表筆換一下再試,如果顯示由1變為數字,再小心的把觸發腳移開,兩個電極千萬不要和表筆斷開,如果顯示不變,那他是好的,如果掉換表筆都有觸發,那應該是雙向可控硅。 至於極性你應該能辨出來吧!
(不過說明一下:數字表+表筆內接電池+極,指針表+表筆內接電池-極)
用萬用表測量可控硅
可控硅分單向可控硅和雙向可控硅兩種,都是三個電極。單向可控硅有陰極(K)、陽極(A)、控制極(G)。雙向可控硅等效於兩只單項可控硅反向並聯而成。即其中一隻單向硅陽極與另一隻陰極相邊連,其引出端稱T2極,其中一隻單向硅陰極與另一隻陽極相連,其引出端稱T2極,剩下則為控制極(G)。 1、單、雙向可控硅的判別:先任測兩個極,若正、反測指針均不動(R×1擋),可能是A、K或G、A極(對單向可控硅)也可能是T2、T1或T2、G極(對雙向可控硅)。若其中有一次測量指示為幾十至幾百歐,則必為單向可控硅。且紅筆所接為K極,黑筆接的為G極,剩下即為A極。若正、反向測批示均為幾十至幾百歐,則必為雙向可控硅。再將旋鈕撥至R×1或R×10擋復測,其中必有一次阻值稍大,則稍大的一次紅筆接的為G極,黑筆所接為T1極,餘下是T2極。
2、性能的差別:將旋鈕撥至R×1擋,對於1~6A單向可控硅,紅筆接K極,黑筆同時接通G、A極,在保持黑筆不脫離A極狀態下斷開G極,指針應指示幾十歐至一百歐,此時可控硅已被觸發,且觸發電壓低(或觸發電流小)。然後瞬時斷開A極再接通,指針應退回∞位置,則表明可控硅良好。
對於1~6A雙向可控硅,紅筆接T1極,黑筆同時接G、T2極,在保證黑筆不脫離T2極的前提下斷開G極,指針應指示為幾十至一百多歐(視可控硅電流大小、廠家不同而異)。然後將兩筆對調,重復上述步驟測一次,指針指示還要比上一次稍大十幾至幾十歐,則表明可控硅良好,且觸發電壓(或電流)小。若保持接通A極或T2極時斷開G極,指針立即退回∞位置,則說明可控硅觸發電流太大或損壞。可按圖2方法進一步測量,對於單向可控硅,閉合開關K,燈應發亮,斷開K燈仍不息滅,否則說明可控硅損壞。
對於雙向可控硅,閉合開關K,燈應發亮,斷開K,燈應不息滅。然後將電池反接,重復上述步驟,均應是同一結果,才說明是好的。否則說明該器件已損壞。
更多
http://hi..com/qinhongsheng/blog/item/b880c2bf63c4ae0b18d81f7a.html
http://www.567blog.com/blog/web/chenwenheng/archives/2006/2654.html