导航:首页 > 使用方法 > 集合运算常用方法

集合运算常用方法

发布时间:2022-09-20 09:12:37

Ⅰ 集合的基本运算常用性质

集合的基本运算,一般是利用集合的基本性质,来运算了。
具体:集合的性质:
确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。
互异性:集合中任意两个元素都是不同的对象。不能写成{1,1,2},应写成{1,2}。
无序性:{a,b,c}{c,b,a}是同一个集合。
集合有以下性质:若A包含于B,则A∩B=A,A∪B=B

集合的表示方法:常用的有列举法和描述法。
1.列举法:常用于表示有限集合,把集合中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法。{1,2,3,……}
2.描述法:常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}
3.图式法:为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。
楼主可以搜下,集合的基本运算。

Ⅱ 集合的基本运算有哪些

集合的基本运算:交集、并集、相对补集、绝对补集、子集。

(1)交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集(intersection),记作A∩B。

(2)并集:给定两个集合A,B,把他们所有的元素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。

(3)相对补集:若A和B是集合,则A在B中的相对补集是这样一个集合:其元素属于B但不属于A,B-A= { x| x∈B且x∉A}。

(4)绝对补集:若给定全集U,有A⊆U,则A在U中的相对补集称为A的绝对补集(或简称补集),写作∁UA。

(5)子集:子集是一个数学概念:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集。符号语言:若∀a∈A,均有a∈B,则A⊆B。

Ⅲ 集合的基本运算

集合交换律 A∩B=B∩A A∪B=B∪A
集合结合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C)
集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C)
集合德.摩根律 集合 Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB

Ⅳ 集合运算公式大全

1.等幂律
A∪A=A
A∩A=A
2.同一律
A∪?=A
A∩E=A
3.互补律
A∪A'=U
A∩A'=?
4交换律
A∪B=B∪A
A∩B=B∩A
5.结合律
(A∪B)∪C=A∪(B∪C)
(A∩B)∩C=A∩(B∩C)
6.分配律
A∪(B∩C)=(A∪B)∩(A∪C)
A∩(B∪C)=(A∩B)∪(A∩C)
7.吸收律
A∪(A∩B)=A
A∩(A∪B)=A
8.反演律
(A∪B)'=A'∩B'
(A∩B)'=A'∪B'

Ⅳ 集合的运算有哪些说明它们的特点

合的概念

一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母。任何集合是它自身的子集.

元素与集合的关系:
元素与集合的关系有“属于”与“不属于”两种。

集合的分类:
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}
交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}
差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)
注:空集包含于任何集合,但不能说“空集属于任何集合”.

某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集,任何集合是它本身的子集,子集,真子集都具有传递性。
‘说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A ⊆ B。若 A 是 B 的子集,且 A 不等于 B,则 A 称作是 B 的真子集,写作 A ⊂ B。
所有男人的集合是所有人的集合的真子集。’

集合元素的性质:
1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。
2.互异性:集合中任意两个元素都是不同的对象。不能写成{1,1,2},应写成{1,2}。互异性既集合中的元素是没有重复现象的,任何两个相同的对象在同一个集合中时,只能算作这个集合的一个元素
.无序性:{a,b,c}{c,b,a}是同一个集合。
集合有以下性质:若A包含于B,则A∩B=A,A∪B=B

集合的表示方法:常用的有列举法和描述法。
1.列举法:常用于表示有限集合,把集合中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法。{1,2,3,……}
2.描述法:常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}
3.图式法:为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。

常用数集的符号:
(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N
(2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)
(3)全体整数的集合通常称作整数集,记作Z
(4)全体有理数的集合通常简称有理数集,记作Q
(5)全体实数的集合通常简称实数集,记作R
(6)复数集合计作C

集合的运算:
1.交换律
A∩B=B∩A
A∪B=B∪A
2.结合律
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3.分配律
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)

2德.摩根律
Cs(A∩B)=CsA∪CsB
Cs(A∪B)=CsA∩CsB

3“容斥原理”
在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。例如A={a,b,c},则card(A)=3

card(A∪B)=card(A)+card(B)-card(A∩B)
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)
1985年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。

吸收律
A∪(A∩B)=A
A∩(A∪B)=A
求补律
A∪CsA=S
A∩CsA=Φ

http://ke..com/view/15216.html?wtp=tt

Ⅵ 集合的基本运算

集合的基本运算如下:

分析:定位法中的“个位”定位、“十位”定位、交度换法。例如用1、2、3组成两位数,每个两位数的十位数和个位数不能一样,定位衟法中的“个位”定位、“十位”定位、交换法。

“个位”定位法是把1定位在个位:度21、31;把2定位在个位:12、32;把3定位在个位:13、23。

相关知识点:容斥原知理。

在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被重复计衜算知,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情衟况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

Ⅶ 集合运算公式大全

先证明两个元素的公式:card(A∪B)=card(A)+card(B)-card(A∩B).
显然当A∩B=空集时,有card(A∪B)=card(A)+card(B),即上述公式成立(因为card(空集)=0);
当A∩B≠空集时,而A∪B=(A(A∩B))∪(B(A∩B))∪(A∩B),这是三个不相交的并,故card(A∪B)=card((A(A∩B))∪(B(A∩B))∪(A∩B))=card(A(A∩B))+card(B(A∩B))+card(A∩B);
又因为A=(A(A∩B))∪(A∩B),这又是一个无交的并(即(A(A∩B))∩(A∩B)=空集),故card(A)=card(A(A∩B))+card(A∩B),同理card(B)=card(B(A∩B))+card(A∩B);
故card(A∪B)=card(A(A∩B))+card(B(A∩B))+card(A∩B)=(card(A)-card(A∩B))+(card(B)-card(A∩B))+card(A∩B)=card(A)+card(B)-card(A∩B),获证
再用上面的结论证明card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C).
card(A∪B∪C)=card(A∪(B∪C))=card(A)+card((B∪C))-card(A∩(B∪C))=card(A)+card(B)+card(C)-card(B∩C)-card((A∩B)∪(A∩C))=card(A)+card(B)+card(C)-card(B∩C)-(card(A∩B)+card(A∩C)-card((A∩B)∩(A∩C)))=card(A)+card(B)+card(C)-card(B∩C)-(card(A∩B)+card(A∩C)-card(A∩B∩C))=
card(A)+card(B)+card(C)-card(B∩C)-card(A∩B)-card(A∩C)+card(A∩B∩C)获证.
注:论证过程中用到了一些集合的运算公式,现整理如下供你参考:
集合交换律
A∩B=B∩A
A∪B=B∪A
集合结合律
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
集合分配律
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
集合吸收律
A∪(A∩B)=A
A∩(A∪B)=A
集合求补律
A∪CuA=全集
A∩CuA=空集(其中CuA表示在全集X下集合A的补集即CuA=X-A)
德摩根律
A(B∪C)=(AB)∩(AC)
A(B∩C)=(AB)∪(AC)
Cu(B∪C)=Cu(B)∩Cu(C)
Cu(B∩C)=Cu(B)∪Cu(C)
Cu(空集)=全集
Cu(全集)=空集
若你能把上面的公式记熟,则看这个证明没有任何问题,其实在证明中我也只是部分地用到了某些集合运算公式,就看你自己去发现了.
其实这还可以用图形来直观形象地说明.见下插图你就会明白为什么有card(A∪B)=card(A)+card(B)-card(A∩B).推而广之,你还会明白为什么有card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C).但是数学是一门十分严格的科学,光有图形是不能让数学家们承认的,因此严格的证明思想是今后进行数学研究的关键.
引用一位法国当代大数学家A.Weil(安德鲁.韦依)的话:“严格性之于数学家就如道德之于人.”就让它作为激励后辈们不断攀登数学高峰的指路明灯吧!

Ⅷ 集合的基本运算怎么

解析:
集合的基本运算主要要有交、并、补
集合的交运算:就是求这些集合所包含的公共元素的集合
集合的并运算:就是这些集合中所有元素构成的集合
集合的补运算:有一个全集,有一个集合A,由A中不含有的元素,全集含有的元素构成的集合

有什么不明白的可以继续追问,望采纳!

Ⅸ 集合运算法则

交换律:A∩B=B∩A;A∪B=B∪A。结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C。分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。

集合运算法则

交换律:A∩B=B∩A;A∪B=B∪A

结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C

分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)

对偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C

同一律:A∪∅=A;A∩U=A

求补律:A∪A'=U;A∩A'=∅

对合律:A''=A

等幂律:A∪A=A;A∩A=A

零一律:A∪U=U;A∩∅=∅

吸收律:A∪(A∩B)=A;A∩(A∪B)=A

反演律(德·摩根律):(A∪B)'=A'∩B';(A∩B)'=A'∪B'。文字表述:1.集合A与集合B的并集的补集等于集合A的补集与集合B的补集的交集;2.集合A与集合B的交集的补集等于集合A的补集与集合B的补集的并集。

容斥原理(特殊情况):

card(A∪B)=card(A)+card(B)-card(A∩B)

card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)。

集合

集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。

阅读全文

与集合运算常用方法相关的资料

热点内容
初中生面谈技巧和方法 浏览:660
密度对应体积的实验检测方法 浏览:201
帐篷防风绳使用方法 浏览:551
小肠道堵塞最佳治疗方法 浏览:804
如何用纸做小汽车简易方法 浏览:849
罗盘的使用方法图解一 浏览:678
兰花植料方法视频教程 浏览:334
炸红鱼的正确方法视频 浏览:534
美体机使用方法 浏览:528
正己烷水蒸气蒸馏法的方法步骤 浏览:284
面部提升什么方法好 浏览:508
307排放灯亮解决方法 浏览:164
左倒库简单方法视频 浏览:192
高考题型解题技巧和方法手抄报 浏览:513
机顶盒接口安装方法 浏览:750
测腹直肌分离正确方法图片 浏览:233
藏医外治疗顽症的方法 浏览:537
全面战争快速通关方法 浏览:490
发烧鼻子不通有什么物理方法 浏览:494
炸酱面制作方法视频 浏览:10