导航:首页 > 知识科普 > 常见的加法方法有哪些

常见的加法方法有哪些

发布时间:2025-07-12 06:05:57

Ⅰ 一二年级速算技巧

一二年级速算技巧

一二年级速算技巧,一二年级的孩子在学习数学的时候一般都是需要进行加减法的计算的,速算也是有一定的技巧的,我们需要掌控,下面就为大家分享一二年级速算技巧。

一二年级速算技巧1

进位加法的简单计算方法

不管多大的数相加其最基本的原则都是20以内的加法原则,20以内进位加法的速算口诀为:几加九进十减一、几加八进十减二、几加七进十减三、几加六进十减四。由于加法具有交换律,所以我们只需要记住这几句就可以了,在100以内的加法中,先观察两个各位数字,找出他们中间较大的数,按口诀进行计算可以很快的算出答案。

“凑整”先算法

例题1.24+44+56

=24+(44+56)

=24+100=124

解题思路:因为44+56=100是个整百的数,所以先把它们的和计算出来,这样再加别的数会比较简单。

例题2.53+36+47

=(53+47)+36

=100+36=136

解题思路:因为53+47=100是个整百数,所以先把+47带着符号搬家,搬到+36前面,然后再把53+47的和算出来。

养成良好的'计算习惯

养成良好的计算习惯,是提高孩子计算能力切实有效的办法。帮助孩子养成以下良好计算习,应该做到“一看、二想、三计算”的认真计算习惯。

计算是一件非常严肃认真的事情,来不得半点马虎,但恰恰有孩子没有良好学习习惯,拿到计算题后,没有看清数字,没有弄清运算顺序,就盲目的算起来。

一二年级速算技巧2

加法交换律与加法结合律

加法交换律:

两个数相加,交换加数的位置,它们的和不变。即a+b=b+a

一般地,多个数相加,任意改变相加的次序,其和不变。

a+b+c+d=d+b+a+c

加法结合律:

几个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。即:a+b+c = (a+b)+c = a+(b+c),

速算与巧算中常用的三大基本思想

1.凑整 (目标:整十 整百 整千...)

2.分拆(分拆后能够凑成 整十 整百 整千...)

3.组合(合理分组再组合 )

3常见方法

凑整法

两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的"补数",利用"补数"巧算加法,通常称为"凑整法"

如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。

又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,

在上面算式中,1叫9的"补数";89叫11的"补数",11也叫89的"补数"。也就是说两个数互为"补数"。

对于一个较大的数,如何能很快地算出它的"补数"来呢?一般来说,可以这样"凑"数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。

如: 87655→12345, 46802→53198,87362→12638,…

下面讲利用"补数"巧算加法,通常称为"凑整法"。

巧算下面各题:

①36+87+64

②99+136+101

③1361+972+639+28

解:

①式=(36+64)+87=100+87=187

②式=(99+101)+136=200+136=336

③式=(1361+639)+(972+28)=2000+1000=3000

组合凑整法

(1)在加、减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”

(2)在加、减法混合运算中,添括号时:如果添加的括号前面是“+”号,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”号,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。

(3)利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。

基准法

在减法运算过程中利用补数原理,先将几个减数凑整,再进行减法运算。在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。

一二年级速算技巧3

简便计算三字经

做简算,是享受。细观察,找特点。

连续加,结 对子 。连续乘,找朋友。

连续减,减去和。连续除,除以积。

减去和,可连减。除以积,可连除。

乘和差,分别乘。积加减,莫慌张,

同因数,提出来,异因数,括号放。

同级算,可交换。特殊数,巧拆分。

合理算,我能行。

常用的七种简便运算 方法

方法一:带符号搬家法

当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

a+b+c=a+c+b

a+b-c=a-c+b

a-b+c=a+c-b

a-b-c=a-c-b

a×b×c=a×c×b

a÷b÷c=a÷c÷b

a×b÷c=a÷c×b

a÷b×c=a×c÷b

方法二:结合律法

(一)加括号法

1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。

2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。

(二)去括号法

1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。

2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。

方法三:乘法分配律法

1.分配法

括号里是加或减运算,与另一个数相乘,注意分配。

例:8×(3+7)

=8×3+8×7

=24+56

=80

2.提取公因式

注意相同因数的提取。

例:9×8+9×2

=9×(8+2)

=9×10

=90

3.注意构造,让算式满足乘法分配律的条件。

例:8×99

=8×(100-1)

=8×100-8×1

=800-8

=792

方法四:凑整法

看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。

例:9999+999+99+9

=(10000-1)+(1000-1)+(100-1)+(10-1)

=(10000+1000+100+10)-4

=11110-4

=11106

方法五:拆分法

拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。

例:32×125×25

=4×8×125×25

=(4×25)×(8×125)

=100×1000

=100000

方法六:巧变除为乘

除以一个数等于乘以这个数的倒数。

方法七:裂项法

分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,需注意:

1.连续性

2.等差性

计算方法:头减尾。除公差。

Ⅱ 小学数学进位加法知识点

1、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。

利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。

2、8、7、6加几的计算方法:(1)点数;(2)接着数;(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。

3、5、4、3、2加几的计算方法:(1)“拆大数、凑小数”。(2)“拆小数、凑大数”。

4、解决问题

(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。

(2)求总数的实际问题,用加法计算。

数学学习方法诀窍

正确对待考试

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的.情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

细心地发掘概念和公式

很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?

我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

多项式定义

在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。

对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。

阅读全文

与常见的加法方法有哪些相关的资料

热点内容
交互设计色彩的搭配方法有哪些 浏览:755
舒克漱口水使用方法 浏览:456
xp快捷菜单在哪里设置方法 浏览:66
流感检测方法及注意事项 浏览:128
佛手植物盆栽种植方法 浏览:509
适合腰肌劳损锻炼方法 浏览:775
纽扣怎么折简单方法 浏览:594
中国数学教学方法的发展 浏览:673
二氯乙烯的检测方法有 浏览:94
收缩毛孔用什么方法 浏览:790
做笔筒最简单方法用普通纸 浏览:200
血液ph值测定有哪些方法 浏览:697
锻炼地筋最好的方法 浏览:659
农用拖拉机稳压器连接方法 浏览:529
醋洗香云纱的正确方法 浏览:183
剥玉米过敏快速方法 浏览:857
竹子工艺品简单制作方法 浏览:809
耳朵进了蚊子怎么办最简单方法 浏览:876
如何管理知识的方法 浏览:78
5岁男孩多动症怎么治疗方法好 浏览:202