① 假期实践活动,朋友们告诉我一下水质检测的方法、原理、标准
所谓水质指标是用以评价一般淡水水域、海水水域特性的重要参数。可以根据这些参数对水质的类型进行分类,对水体质量进行判断和综合评价。水质指标已形成比较完整的指标体系。
许多水质指标是表示水中某一种或一类物质的含量,常直接用其浓度表示,有些水质指标则是利用某一类物质的共同特性来间接反映其含量。例如水中有机物质具有易被氧化的共同特性,可用其耗氧量作为有机物含量的综合性指标;还有一些水质指标是同测定方法直接联系的,例如混浊度,色度等用人为规定的并配制某种人工标准溶液作为衡量的尺度。水质指标按其性质不同,可分为物理的,生物的和化学的指标。关于生物指标,根据水生生物的组成(种类与数量)以及它们的生态学特征而提出的各项指标已在有关课程中介绍。本节概要讨论一下几项常用的水质物理指标的含义。对于化学指标的含义将在本书的其他有关部门章节中作有关深入的讨论,这里按测定所使用的不同方法作粗略的分类。
(一)水质的物理指标
水体环境的物理指标项 目颇多,包括 水温、渗透压、混浊度(透明度)、色度、悬浮固体、蒸发残渣以及其它感官指标如味觉、嗅觉属性等等。
1. 温度 温度是最常用的物理 指标 之一。由于水的许多物理特性、水中进行的化学过程和生物过程 都同 温度有关,所以它经 常是必须加以测定的。天然水的温度因水源的不同而异.地表水的温度与季节气候条件有关,其变化范围大约在0.1--30℃;地下水的温度则比较稳定,一般变化于8--12℃左右,而海水的温度变化范围为-2--30℃。
2. 嗅与味 被污染的水体往 往具有不正 常 的气味,用鼻闻到的称为嗅,口尝到的称为味。有时嗅与味 不能截然分开。常常根据水的气味,可以推测水中所含杂质和有害成分。水中的嗅与味的来 源可能有:水生植物或微生物的繁殖和衰亡;有机物的腐败分解;溶解气体H2S等;溶解的矿物盐或混入的泥土;工业废水中 的 各种 杂质 如 石油、酚等;饮用水消毒过程的余氯等。不同的物质有着不同的气味,例如湖 沼水因藻类繁生或有机物产生的鱼腥及霉烂气味;浑浊河水常含有泥土的涩 味;温泉水常有硫酸味;有些地下水的H2S气味;含溶解氧较多的带甜味;含有机物较多的也常具有甜味;水中含NaCl带有咸味,含MgSO4,Na2SO4等带有苦味;含CuSO4带有甜味,而Fe的水带有涩味。 人的感官分辨嗅与味,不可避免带有主观性。目前对嗅与味尚无完全客观的标准和检测的仪器,只有极清洁或 已消毒过的 水才可用口尝试。由于水温对水的气味有很大影响,所以测定嗅 与味常常在室温20℃和加热(40-50℃)两种情况下进行。 此外,有人提出 以臭气浓度及臭气强度指数来度量水质的嗅觉属性。臭气浓度(TO)=200/a,式中a为感觉到臭气的最小水样量(mL)。在给水水源的标准中,要求(TO)值低于3-5。 臭气 强度指数(PO)系指被测水样稀释到没有臭气为止时以百分率表示的稀释倍数。 PO与TO通常具有如下关系:PO=lgTO/lg2(合田健,1989)。
3.颜色与色度 天然水经常表现出各种颜色。湖沼水常有黄褐色、或黄绿色, 这往往是由腐殖质造成的。水 中悬浮泥沙和不溶解 的矿物质也长带有颜色,例如粘土使水呈黄色;铁的氧化物使水呈黄褐色; 硫化氢氧化析出的硫使水呈蓝色等等。各种水藻如球藻、硅藻等的繁殖使水 呈黄绿色、褐色等。根据水的颜色,可以推测水中杂质的数量和种类。色 度是对天然的或处理之后的各种用水进行水色测定时所规定的指标。目前世 界各国统一用氯化铂酸钾(K2PtCl6)和 氯 化钴(CoCl2.6H2O)配制的混合溶液作为色度的标准。
4.混浊度与透明度 水中若含有悬浮及胶体状态的物质,常会发生混浊现象。地表水的混浊是由泥沙、粘土、有机物造成的。地下水一般比较清澈透明,但若水中含有Fe2+盐,与空气接触后就可能产生Fe(OH)3,使水呈棕黄色混浊状态;海洋在近岸和河口区由于陆地径流携带大量泥沙、粘土、有机物造成的。不同河流因流经地区的地质土壤条件不同,混浊程度可能有很大的差别。地下水一般比较清澈透明,但若水中含有Fe2+盐,与空气接触后就可能产生Fe(OH)3,使水呈棕黄色混浊状态;海洋在近岸和河口区由于陆地径流携带大量泥沙和其它有机物,水质比较混浊而远岸海区水区水质透明。
混浊度是一种光学效应,它表示光线透过水层时受到阻碍的程度。这种光学效应和和微粒的大小及形状有关。从胶体颗粒到悬浮颗粒都能产生混浊现象,其粒径的变化幅度是很大的。所有有相同悬浮物质含量的两种水体若颗粒粒径分级状况不同,其混浊程度就未必相等。浑浊度的标准单位是以不溶性硅如漂白土、高岭土在光学阻碍作为测量的基础,即规定1mgSiO2.L-1所构成的混浊度为1度。把预测水样与标准混浊度按照比浊法原理进行比较就可以测得其混浊度。
透明度是表示水体透明程度的指标。它与混浊度的意义恰恰相反。都表明水中杂质对透过光线的阻碍程度。若把某一方面白色或黑白相间的圆盘作为观察对象,透过水层俯视圆盘并调节圆盘深度至恰能看到为止,此时圆盘所在深度位置称为透明度。
5. 固体含量 天然水体中所含物质大部分属于固体物质,经常有必要测定其含量作为直接的水质指标。各种固体含量可以分为以下几类:(1)总固体。即水样在一定温度下蒸发干燥后残存的固体物质总量,也称蒸发残留物;(2)悬浮性固体。即将水样过滤①,截留物烘干后的残存的固体物质的量,也就是悬浮物质的含量,包括不溶于水的泥土、有机物、微生物等;(3)溶解性固体。即水样过滤后,滤液蒸干的残余固体量。包括可溶于水的无机盐类及有机物质。总固体量是悬浮固体和溶解性固体二者之和。此外还有可沉降固体,固体的灼烧减重等指标。各种固体含量的测定都是以重量法进行的,测定时蒸干温度对结果的影响很大。一般规定的确105--110℃,不能彻底赶走硫酸钙、硫酸镁等结晶水。不易得到固定不变的重量;若在180℃蒸干,所得结果虽比较稳定,但由于一些盐类如CaCl2 、Ca(NO3)2MgCl2、Mg(NO3)2等具有强烈的吸湿性,极易吸收空气中的水分,在称量时也不易得到满意的结果。因此测定的结果比较粗略。
(二)水质化学指标
利用化学反应、生物化学的反应及物理化学的原理测定的水质指标,总称为化学指标。由于化学组成的复杂性,通常选择适当的化学特性进行检查或作定性、定量的分析。根据不同的分析方法可以把化学指标归纳如下:
1.中和的方法 包括水体的碱度、酸度等;
2.生成螯合物的方法 如Ca2+ Mg2+及硬度等;
3.加热和氧化剂分解法 将含生物体在内的有机化合物的含量以加热分解时产生CO2的量[总有机碳(TOC);微粒有机碳(POC)]、分解时消耗的氧量[总耗氧量(TOD)]或消耗氧化的量[化学耗氧量(COD)]来表示的指标;
4.生物化学反应的方法论 以生物化学耗氧量(BOD)为代表,是测定微生物分解有机物时所需消耗的氧量,包括测定微生物在呼吸过程中产生的CO2的量以及利用脱氢酶等酶活性法来测定有效生物量等指标;
5.氧化还原反应及沉淀法。最典型为溶解氧含量及氯离子含量等指标。
6.电化学法。有水的电导率,氯化-还原电位(pE)以及包括pH在内的离子选择电极的各种指标,如F-、NH4+以及许多金属离子;
7.微量成分。以仪器分析为主要检测手段。包括分光光度法,原子吸收光谱法,气相、液相色谱法,中子活化分析法以及等离子发射光谱法等。指标项目众多,如生物营养元素、各种化学形态的重金属离子及非金属微量元素、微量有机物、水已的污染物(如有机农药、油类)以及放射性元素等等。 总之,系统了解各类水质指标的含义具有重要意义。因为对于任何水生生态系统环境都是通过对一系列的、经过严格选择的、具有典型意义代表性的指标进行调查或监测分析结果,而加以综合评价的。必须强调,水质的生物学指标的调查分析结果对于科学评价水环境质量越来越大越显示其重要性。象英、美、日等国对水环境的要求,都从生态学的观点出发,重视生物监测。例如英国泰晤士河由于进行了常时间的治理,1969年已有鱼群重新出现,其治理效果就是用已有碍100多种鱼类重新回到泰晤士河加以表征的;日本1970年将生物学水知判断法列入有关水环境质量指标中;我国现在已将细菌学指标列为部颁水环境质量标准。
二、 我国当前沿用的主要水质理化指标及测试系统
(一) 主要理化指标 当前许多国家都颁布了各自不同的水质质量标准,规定了为数繁多的指标项目。我国于1973年颁布了《工业“三废”排放试行标准》,规定了工业废水中有14项有害物质的最高排放浓度。1976年颁发《生活饮用水水质标准》,其中感官性指标有4项(色、混浊度、嗅与味、肉眼可见物);化学指标有8项(Ph、总硬度、铁、锰、铜、锌、挥发酚、阴离子合成洗涤剂);毒理学指标有8项(氰化物、砷、硒、汞、镐、六价铬、铅);细菌学指标有3项(细菌总数、大肠菌群、游离余氯)。1983年发布《地表水环境质量标准》,规定出20种监测项目的三级质量标准,其中包括pH、水温、色、嗅、溶解氧,生化需氧量,挥发性酚类、氮化物、砷、总汞、镉、六价铬、铅、铜、石油类、大肠菌群等。我国先行的《海水水质标准(GB3097-82)》规定的理化指标包括物理感官指标,化学感官指标和微生物指标计25项;《渔业水域水质标准(GB11607-89)》包括感官和化学指标34项。
水环境调查或监测分析项目在理化指标方面多根据各类水体目前和将来的用途而加以选择和确定的。在养殖生产和有关部门水生生物科学研究中,为了充分利用和改良或控制水的理化条件,常常必须对10多项常规指标进行分析,包括温度、含盐量(盐度)、溶解氧、pH、碱度、硬度、硝酸盐、亚硝酸盐、铵氮、总氮、磷酸盐、总磷、硅酸盐、化学耗氧量等等;对水环境的污染物质的调查中常按基础调查、检测性调查、专题性调查及应急性调查等多种不同类型的用途而选择不同的指标项目。淡水水体和海水水体常常也有所差异。
从国外报道各种类型的水质调查或监测标准来看,由于国情的不同,其侧重点各异。而且调查或监测指标的选择和确定问题本身也还有一个逐步深入和不断发展的过程,例如对污染指标随着新的化学物质的品种的增加、分析技术的发展,以及在流行病学研究中对致癌、致畸及致突变的生理生化过程的深入研究,监测或调查项目会不断的加以改变,方法也会逐步发展和完善。
(二) 测试系统 对水质理化指标进行的测试实验可采用现场测试、船上测试和陆上实验室测试三种方式。采用不同方式测试所得结果的确切程度是不同的,特别是深层水样的 采集和储存,其温度、压力产生变化,都将使化学平衡点产生变化。例如[HCO3-]/[CO32-]等离子成分的浓度比值以及溶解气体的含量等都回发生变化。;储存的水样,即使排除了容器污染和通过容器表面散失的可能性,水质也会因为悬浮物的凝聚沉降以及生物提的代谢过程、死亡分解过程等的影响而发生改变。
目前,可采用现场测试的项目越来越多,遥控遥感技术的发展使许多水质指标项目的测试可以字响当大的范围进行同步观测。但借助仪器的探头作高深度水域(特别是海洋)的现场测试常常遇到很多困难。加在现场测试仪器尚未能普及的情况下,水质理化指标测试工作常常必须先采样后在船上实验室或陆上实验室进行。
随着自动化分析技术的发展,水质指标的调查、监测分析已经逐步使用自动测试系统。该系统一般由采样装置,水质连续监测仪器,数据传输、记录及处理几部分组成,其特点是自动化、仪器化和连续性。目前已采用自动化试系统的有:水温、Ph、电导率、氧化还原电位、混浊度、悬浮物、溶解氧、COD、TOC、TOD、某些金属离子、氰化物等等。自动测试系统可避免人工采样所得数据的不全面性,大大缩短采样分析到获得结果之间的时间。但自动测试系统也有局限性,不能对大部分指标逐一单项进行测定,因为水质化学组成(尤其是污染物)复杂,组分价态、形态多变,干扰严重,需要一系列的化学预处理操作和各种高灵敏度的检测方法。因此,发展规律连续自动测试技术并和实验室(船上和陆上)采样分析技术相结合,是完善水质理化指标的一系列切实可行的途径
分给我吧
② 在环境监测中会应用到哪些方法检测恶臭气体
恶臭是指一切刺激嗅觉器官引起人们不愉快及损坏生活环境的气体物质;其种类繁多,迄今凭人的嗅觉能够感觉到的就有4000多种,其中对人体健康危害较大的就有几十种,产生于食品、化工、制药、造纸、制革、肥料、铸造等工业生产的全过程;电子鼻是一种模拟生物嗅觉形成过程的仿生学仪器,主要由气敏传感器阵列、信号预处理和模式识别三部分组成,分别与生物嗅觉系统中的嗅觉细胞、嗅觉神经网络和大脑相对应。在线恶臭电子鼻是一个全自动的监测系统,数据的保存、处理、计算都是自动进行的,同时还具有风速风向监测装置,结合风速风向来判断恶臭的来源、扩散范围和趋势。可实现对臭气浓度24小时不间断连续监测,提供与人工嗅辨(三点比较式臭袋法)完全吻合的恶臭数值。可以有效实现机器代替人工,取得客观数据,实时监控恶臭气味的扩散,及时整改,创建和谐宜居环境。
③ 臭气的臭气浓度
成都有了恶臭污染监测实验室
本报讯(记者郑先聪实习生刘永飞) 实验室里6位穿白大褂的人,每人拿着三个充气塑料袋,用鼻子分别闻过之后,各自说出哪个袋子里装的是臭气……这是记者在成都市环卫科研所恶臭污染监测实验室 看到的场景。为加强对恶臭污染源的监测,成都市成立了我省第一家恶臭污染监测实验室。
“恶臭污染是大气、水、固体废弃物等物质中的异味空气介质,作用于人的嗅觉思维而被感知的一种气味污染。”成都市环境卫生监测中心监测室主任杨涛告诉记者,恶臭污染已成为我国城乡主要的扰民污染,在群众举报的环境污染中,恶臭污染仅次于噪声污染而位居第二位。
“其实早在1994年,就出台了国家恶臭污染物排放标准,共有9项指标,其中8项都是化学物质如氨、硫化氢等,最后一项是臭气浓度,但一直没有具体标准。”杨涛说,成立恶臭污染监测实验室,嗅辨员通过三点比较式臭袋法,可以测定臭气浓度,从而填补了这一项空白。
④ 臭气浓度检测仪的检测原理是什么,一直不能理解。
金属氧化物半导体的传感器可以用于恶臭检测,是因为其本质上还是检测气体浓度,只不过是做了选择性,对气味的气体有响应。当然也并不是所有的这种传感器都可以用,也要细分很多种的。可以做恶臭检测还有另外一个原因是,它可以与人工嗅辩做拟合。
⑤ 环境空气中的臭气浓度执行什么标准
我国正式颁布的国家大气环境质量标准《环境空气质量标准》中规定,污染物浓度限值的一级、二级和三级标准分别用于3类不同的环境空气质量功能区:
一类区为自然保护区、风景名胜区和其他需要特殊保护的地区;一类区执行一级标准;
二类区为城镇规划中确定的居住区、商业交通居民混合区、文化区、一般工业区和农村地区;二类区执行二级标准;
三类区为特定工业区,三类区执行三级标准。
一级标准为优,二级标准为良好,三级标准为轻微污染或轻度污染。
⑥ 臭气的监测方法
杨涛向记者讲解了基本操作过程:判定师将现场采到的气体样品带回实验室,将样品进行逐级稀释,每次交给嗅辨员3个充满气体的袋子,其中一个为充满样品气体的样品,另外两个为无臭空气,嗅辨员只需辨别哪个气袋有味,然后判定师根据一组嗅辨员(通常是6个人)的嗅辨结果进行数据处理,得到样品臭气浓度这一最终结果。
“其实嗅辨师和普通人的嗅觉是一样的,他们只是经过了训练……”杨涛说。由于将样品稀释到非常低的浓度,且是短时间内嗅辨,因此不会对嗅辨员的身心造成危害。
据了解,全国嗅辨员有232人,我省有嗅辨员40多人,成都目前有10人
⑦ 臭气浓度的介绍
odor concentration臭气浓度是根据嗅觉器官试验法对臭气气味的大小予以数量化表示的指标,用无臭的清洁空气对臭气样品连续稀释至嗅辨员阈值时的稀释倍数叫作臭气浓度。
⑧ 目前恶臭监测设备的标准是什么,监测气体都有哪些
目前恶臭监测沿用的标准是《恶臭污染物排放》国家标准。
恶臭污染物的来源主要由下面一些场所:
国标的恶臭监测方法是三点比较式臭袋法测定恶臭气体浓度,先将三只无臭袋中的二只充入无臭空气、另一只则按一定稀释比例充入无臭空气和被测恶臭气体样品供嗅辨员嗅辨,当嗅辨员正确识别有臭气袋后,再逐级进行稀释、嗅辨,直至稀释样品的臭气浓度低于嗅辨员的嗅觉阈值时停止实验。每个样品由若干名嗅辨员同时测定,最后根据嗅辨员的个人阈值和嗅辨小组成员的平均阈值,求得臭气浓度。
鉴于对场地和人员的要求严格,三点比较式臭袋法有很大的局限性;
首先,每个嗅辩员的感觉不同导致臭味强度感觉具有主观性;其次,臭味物质之间存在相互加强或减弱的相互作用从而影响嗅辨员的嗅辨结果;第三,人工嗅辨需要采样回嗅辨室才能检测,但是很多恶臭气体不稳定随时发生变化导致最终嗅辨结果与实际情况产生较大偏差,而且,恶臭污染点间歇性排放,不易及时捕捉样品气体给出污染结果;最后,每种恶臭物质对人的嗅觉阈值不同,有的物质嗅觉物质极低导致嗅辨不出实际结果,而且恶臭物质种类成百上千,非常复杂,很难通过人工嗅辨给出准确的结果,而且一些有毒有害的气体对身体本身伤害性很大。所以,近些年恶臭监测领域引入了恶臭监测仪器,在线恶臭监测设备给恶臭监测工作带来很大的便利,不仅可以24小时实时监测恶臭数据,并能通过物联网等先进的技术上传到环保局等相关平台,而且天津润泽环保还能根据客户领域不同排放物种类不同对排放污染物不同的厂区有针对性的定制化设备,确保检测的准确性,避免形式主义的通用参数检测导致所测数据没参考性。
所以现在主要采用在线恶臭气体监测设备来代替人工实现24小时不间断监测,同时可以根据需求配备自动采样留样系统来实现固定浓度的自动采样留样,而这些监测设备的标准基本也是参照《恶臭污染物排放标准》实现恶臭监测,我们多年来致力于恶臭监测方式方法的研究,引入进口的在线/便携恶臭监测系统,Olfosense、Olfo-Box、Olfo-esay系列在线恶臭监测系统等,配合我们自主研发的MG系列多组分气体监测系统来满足客户定制化的在线监测需求。
⑨ “无量纲”这个单位应该如何解释呢例如:臭气浓度的标准中以无量纲作为单位。
计量学中规定了几个基本单位和许多导出单位。导出单位都可以用基本单位来表达。用基本单位来表达物理量就是量纲表达方式。物理学中有许多常数(也叫恒量,如万有引力恒量、阿佛加的得罗恒量等等),其中有的恒量是没有单位的,这就是无量纲系数。
简单来说,无量纲单位是没有“单位”或单位为“1”的有意义的系数。
臭气浓度是根据嗅觉器官试验法对臭气气味的大小予以数量化表示的指标,无法用基本单位导出,但是又具有意义,而臭气浓度为无量纲量,单位便是“1”。在一般表达中,可省略。
(9)臭气浓度检测方法扩展阅读
量纲的由来
物理学中,不同的物理量有着不同的单位,然而这些单位之间都有相互的联系。
实际上,恰当地规定一些基本的单位(称为基本单位),可以使任何其他的单位(称为导出单位)都表达为这些单位的乘积,将其统一以便于研究各个物理量之间的关系。如在国际单位制中,功的单位焦耳(J),可以表示为“千克平方米每平方秒”(kg·m²/s)。
然而,仅仅用单位来表示会面临一些问题:
(1)在不同的单位制下,各个物理量用单位来表示也会不同,以至于起不到预期的“统一各单位”的效果。如英里每小时(mph)与米每秒(m/s)乍看之下无甚联系,然而它们却都是表示速度的单位。
虽然说经过转换可以将各个基本单位也统一,然而这样终究不够直观,需记忆也不甚方便,而且选择哪一个单位作为统一单位似乎都不甚公平。
(2)把一个既有的单位表达为拆分了的基本单位的形式实际上没有任何意义,功的单位无论如何都不是“千克二次方米每二次方秒”,因为实际上这个单位根本不存在,它只是与“焦耳”恰好相等而已。
况且,这样做也会导致一些拆分后相同但实质不同的单位被混淆,如力矩的单位牛米(N·m)被拆分后也是kg·m²/s,然而它与功显然是完全不同的。
因此量纲被作为表达导出单位组成的专有方式引入物理学中。