① 自然数的计数方法是什么
计数是一个重复加(或减)1的数学行为,通常用于算出对象有多少个或放置想要之数目个对象(对第一个对象从一算起且将剩下的对象和由二开始的自然数做一对一对应)。
中文名
计数
外文名
count
适用范围
数理科学
快速
导航
定义计数原理计数单位计数方法
词语释义
1、计算。
《管子·七法》:“刚柔也,轻重也,大小也,实虚也,远近也,多少也,谓之计数。” 尹知章 注:“凡此十二事,必计之以知其数也。”
《史记·秦始皇本纪》:“自今已来,除諡法。朕为始皇帝。后世以计数,二世、三世至于万世,传之无穷。” 张守节 正义:“﹝数﹞色主反。”
《旧杂譬喻经》卷下:“阿难白佛:‘今佛弟子有得罗汉,已过去者,今现在住及当来者,不可计数。’”
沈从文 《从文自传·辛亥革命的一课》:“一二三四屈指计数那一片死尸的数目。”
2、谋略权术。
《三国志·吴志·张温传》:“诸葛亮 达见计数,必知神虑屈申之宜。”
五代齐己 《看》诗:“六朝图画战争多,最是陈宫计数讹。”
章炳麟 《变法箴言》:“是故名实未亏,而喜怒为用,权术然也;彼变法而无权,不知决塞,不晓计数,则不足以定大功。”[1]
定义
计数(count) 亦称数数。算术的基本概念之一。指数事物个数的过程。计数时,通常是手指着每一个事物,一个一个地数,口里念着正整数列里的数1,2,3,4,5等,和所指的事物进行一一对应,这种过程称为计数。上述逐个地计算事物的方法,称为逐一计数。若按几个一群的方法计数,则称为分群计数。
内含计数通常会使用在计算日历的天数上。通常,当从星期天开始计数8天:星期一会是“第一天”,星期二为“第二天”,而下一个星期一则会是“第八天”。内含地计数时,星期天(开始那天)会是“第一天”,而因此下一个星期天则会是“第八天”。例如:法语中两星期为quinze jours(15日),类似地在希腊语(δεκαπενθήμερο)和西班牙语(quincena)也都是以数字15为基。这种习惯也应用在其它的日历上:在罗马历上,nones(九)是在ides的八天前;而在公历中,Quinquagesima(四旬斋前的星期日,有50之意)在复活节的49天前。
② 怎么找出自然数的倒数之和为1的数原理
这组正整数的倒数和必是1(分母重复看着不自在,合并一下):此方法对任意正整数成立。很容易,用高一的知识就能解,就是"数列求和"Sn=1 + 1/2 + 1/3 + 1/4 + ……+1/100 Sn=1+(1-1/2)+(1-2/3)+(1-3/4)+……+(1- 99/100)
③ 求两个自然数的最大公约数有哪些方法
最大公因数,也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。求两个自然数的最大公约数的方法如下:
1、观察法
运用能被2、3、5整除的数的特征进行观察。
例如,求225和105的最大公因数.因为225、105都能被3和5整除,所以225和105至少含有公因数(3×5)15.因为225÷15=15,105÷15=7.15与7互质,所以225和105的最大公因数是15。
2、查找因数法
先分别找出每个数的所有因数,再从两个数的因数中找出公有的因数,其中最大的一个就是最大公因数。
例如,求12和30的最大公因数。
12的因数有:1、2、3、4、6、12。
30的因数有:1、2、3、5、6、10、15、30。
12和30的公因数有:1、2、3、6,其中6就是12和30的最大公因数。
3、分解因式法
先分别把两个数分解质因数,再找出它们全部公有的质因数,然后把这些公有质因数相乘,得到的积就是这两个数的最大公因数。
例如:求125和300的最大公因数.因为125=5×5×5,300=2×2×3×5×5,所以125和300的最大公因数是5×5=25。
4、关系判断法
当两个数关系特殊时,可直接判断两个数的最大公因数.例如,两个数互质时,它们的最大公因数就是这两个数的乘积;两个数成倍数关系时,它们的最大公因数就是其中较小的那个数。
5、短除法
为了简便,将两个数的分解过程用同一个短除法来表示,那么最大公因数就是所有除数的乘积。
例如:求180和324的最大公因数。
因为:5和9互质,所以180和324的最大公因数是4×9=36。
6、除法法
当两个数中较小的数是质数时,可采用除法求解.即用较大的数除以较小的数,如果能够整除,则较小的数是这两个数的最大公因数。
例如:求19和152,13和273的最大公因数.因为152÷19=8,273÷13=21.(19和13都是质数.)所以19和152的最大公因数是19,13和273的最大公因数是13。
7、缩倍法
如果两个数没有之间没有倍数关系,可以把较小的数依次除以2、3、4……直到求得的商是较大数的因数为止,这时的商就是两个数的最大公因数.例如:求30和24的最大公因数.24÷4=6,6是30的因数,所以30和24的最大公因数是6。
8、求差判定法
如果两个数相差不大,可以用大数减去小数,所得的差与小数的最大公因数就是原来两个数的最大公因数.例如:求78和60的最大公因数.78-60=18,18和60的最大公因数是6,所以78和60的最大公因数是6。
如果两个数相差较大,可以用大数减去小数的若干倍,一直减到差比小数小为止,差和小数的最大公因数就是原来两数的最大公因数。
例如:求92和16的最大公因数.92-16=76,76-16=60,60-16=44,44-16=28,28-16=12,12和16的最大公因数是4,所以92和16的最大公因数就是4。
例:9193和3567,先用9193÷3567,商2余2059,再用3567÷2059,商1余1508,2059÷1508,商1余551,1508÷551,商2余406,551÷406,商1余145,406÷145,商2余116,145÷116,商1余29,116÷29,商4除尽。所以最大公约数 29。
④ 怎么快速找出一个自然数的因数
根据数的整除性质找 这样可以快速找到因数。
⑤ 自然数的计算方法是什么
最基本的是:加、减、乘、除.
⑥ 怎样快速找出一个自然数的所有因数的方法
先把这个整数分解质因数百,然后分别列出每种因数的个数。度再把每个质因数相乘。
例:求48 的所有因数。
先把48分解质因回数,48=2x2x2x2x3,即48可以分解成4个质因数2,和1个质因数3相乘。
那么48 的因数个数就有(4+1)x(1+1)=10(个)答了。
⑦ 如何解开完全数之谜
公元前3世纪时,古希腊数学家在对数的因数分解中,发现了有的数的真因数之和彼此相等,于是诞生了亲和数;而有的真因数之和居然等于自身,于是发现了完全数。6是人们最先认识的完全数。
发现完全数研究数字的先师毕达哥拉斯发现6的真因数1、2、3之和还等于6。
古希腊哲学家柏拉图在他的《共和国》一书中提出了完全数的概念。
约公元前300年,几何大师欧几里得在他的巨着《几何原本》第九章最后一个命题首次给出了寻找完全数的方法,被誉誉(yù):名誉,称赞。为欧几里得定理:“如果2n-1是一个素数,那么自然数2n-1(2n-1)一定是一个完全数。”并给出了证明。
公元1世纪,毕达哥拉斯学派成员、古希腊着名数学家尼可马修斯在他的数论专着《算术入门》一书中,正确地给出了6、28、496、8128这四个完全数,并且通俗地复述了欧几里得寻找完全数的定理及其证明。
神秘的第五个完全数完全数在古希腊诞生后,吸引着众多数学家和数学爱好者像淘金般去寻找。可是,一代又一代人付出了无数的心血,第五个完全数没人找到。
直到1202年才出现一线曙光。意大利的斐斐:fěi。波那契,青年时随父游历古代文明的希腊、埃及、阿拉伯等地区,学到了不少数学知识。他才华横溢,回国后潜心研究所搜集搜集(sōují):到处寻找(事物)并聚集在一起。的数学,写出了名着《算盘书》,成为13世纪在欧洲传播东方文化和系统将东方数学介绍到西方的第一个人,并且成为西方文艺复兴前夜的数学启明星。斐波那契没有放过完全数的研究,他经过推算宣布找到了一个寻找完全数的有效法则,可惜没有人共鸣,成为过眼烟云。
1460年,有人偶然发现在一位无名氏的手稿中,竟神秘地给出了第五个完全数33550336。这比起第四个完全数8128大了4000多倍。跨度如此之大,在计算落后的古代可想发现者之艰辛了,但是,手稿里没有说明他用什么方法得到的,又没有公布自己的姓名,这更使人迷惑迷惑(míhuò):辨不清是非;摸不着头脑,使迷惑。不解了。
不平凡的研究历程16世纪意大利数学家塔塔利亚小时曾被法国入侵者用刀砍伤舌头,落下了口吃的疾患,后来靠自学成为一位着名数学家。他研究发现:当n=2和n=3至39的奇数时,2n-1(2n-1)是完全数。
17世纪“神数术”大师庞格斯在一本洋洋700页的巨着《数的玄学》中,一口气列出了28个所谓“完全数”,他是在塔塔利亚给出的20个的基础上补充了8个。可惜两人都没有给出证明和运算过程,后人发现其中有许多是错误的。
1963年,数学家克特迪历尽艰辛终于证明了无名氏手稿中第五个完全数是正确的,同时他还正确地发现了第六个和第七个完全数216(217-17)和218(219-1)但他又错误地认为222(223)-1、228(229-1)和236(237-1)也是完全数。这三个数后来被大数学家费马和欧拉否定了。
1644年,法国神甫兼大数学家梅森指出,庞格斯给出的28个“完全数”中,只有8个是正确的,即当n=2,3,5,7,13,17,19,31时,2n-1(2n-1)是完全数,同时又增加了n=67,127和257。
在未证明的情况下他武断地说:当n≤257时,只有这11个完全数。这就是着名的“梅森猜测”。
“梅森猜测”吸引了许多人的研究,哥德巴赫认为是对的;微积分发现者之一的德国莱莱:lái。布尼兹也认为是对的。他们低估了完全数的难度。
1730年,被称为世界四大数学家雄狮之一的欧拉,时年23岁,正值风华风华(fēnɡhuá):风采和才华。正茂。他出手不凡,给出了一个出色的定理:“每一个偶完全数都是形如2n-1(2n-1)的自然数,其中n是素数,2n-1也是素数”,并给出了他一直没有发表的证明。这是欧几里得定理的逆理。有了欧几里得与欧拉两个互逆定理,公式2n-1(2n-1)成为判断一个偶数是不是完全数的充要条件了。
欧拉研究“梅森猜想”后指出:我冒险断言:每一个小于50的素数,甚至小于100的素数,使2n-1(2n-1)是完全数的仅有n取3,5,7,13,17,19,31,41,47,我以一个优美的定理出发得到了这些结果,我自信它们具有真实性。”1772年,欧拉因过度拼命研究使双目已经失明了,但他仍未停止研究,他在致瑞士数学家丹尼尔的一封信中说:“我已经心算证明n=31时220(231-1)是第8个完全数。”同时,他发现他过去认为n=41和n=47时是完全数是错误的。
欧拉定理和他发现的第8个完全数的方法。使完全数的研究发生了深刻变化,可是,人们仍不能彻底彻底(chèdǐ):一直到底,深而透,也作澈底。解决“梅森猜测”。
1876年法国数学家鲁卡斯创立了一种检验素数的新方法,证明n=127时确实是一个完全数,这使“梅森猜测”之一变成事实,鲁卡斯的新办法给研究完全数者带来一线生机,同时也动摇了“梅森猜测”。因数家借助他的方法发现猜没中n=67,n=257时不是完全数。
在以后1883—1931年的48年间,数学家发现“梅森猜测”中n≤257范围内漏掉了n=61,89,107时的三个完全数。
至此,人们前赴后继,不断另辟新路径,创造新方法,用笔算纸录,耗时两千多年,共找到12个完全数,即n=2,3,5,7,13,17,19,31,61,89,107,127时,2n-1(2n-1)是完全数。
笛卡尔曾公开预言:“能找出完全数是不会多的,好比人类一样,要找一个完全人亦非易事。”
历史证明了他的预言。
从1992年开始,人们借助高性能计算机发现完全数,至1996年才找到18个。
等待揭穿之谜迄迄:qì。今为止,发现的30个完全数,统统都是偶数,于是,数学家提出猜测猜测(cāicè):推测,凭想象估计。:存不存在奇数完全数。
1633年11月,法国数学家笛卡尔给梅森一封信中,首次开创奇数完全数的研究,他认为每一奇完全数必具有PQ2的形式,其中P是素数,并声称不久他会找到,可不仅直到他死时未能找到,而且至今,没有任何一个数学家发现一个奇完全数。这成为世界数论又一大难题。
虽然,谁也不知道它们是否存在,但经过一代又一代数学家研究计算,有一点是明确的。那就是如果存在一个奇完全数的话,那么它一定是非常大的。
有多大呢?远的不说,当代大数学家奥尔检查检查(jiānchá):为了发现问题而用心查看;翻检查考。过要1018以下自然数,没有一个奇完全数;1967年,塔克曼宣布,如果奇完全数存在,它必须大于1036,这是一个37位数;1972年,有人证明它必大于1050,1982年,有人证明,它必须大于10120;……这种难于捉摸的奇完全数也许可能有,但它实在太大,以至超出了人们能够用计算机计算的范围了。
对奇完全数是否存在,产生如此多的估计,也是数学界的一大奇闻!
关于完全数还有许多待揭之谜,比如:完全数之间有什么关系?完全数是有限还是无穷多个!存在不存在奇完全数?人们还发现完全数的一个奇妙现象,把一个完全数的各位数字加起来得到一个数,再把这个数的各位数字加起来,又得到一个数,一直这样做下去,结果一定是1。例如,对于28,2+8=10,1+0=1对于496有,4+9+6。19,1+9=10,1+0=1等等。这一现象,对除6外的所有完全数是否成立?以上这些难题,与其他数学难题一样,有待人们去攻克攻克(ɡōnɡkè):攻下(敌人的据点)。。
⑧ excel中如何查找某一区域数据中缺少的自然数
若那些数字在M1:M20中,后面的PSV列也是按20行算,任意单元格中输入
=SMALL(IF(MMULT(COUNTIF(OFFSET(M$1:M$20,,{0,3,6,9}),ROW($1:$3000)),{1;1;1;1})=0,ROW($1:$3000)),ROW(A1))
同时按下CTRL+SHIFT+回车,输入数组公式,用自动填充柄将这个公式下拉,就行了。
如果不是20行,请将公式中的M$1:M$20相应修改。
如果区域中夹杂的其它列中不会出现数字,公式还可以相应简化。
⑨ 自然数的计算方法
自然数(natural number),可以是指正整数(1, 2, 3, 4),亦可以是非负整数(0, 1, 2, 3, 4)。在数论通常用前者,而集合论和计算机科学则多数使用后者。认为自然数不包含零的其中一个理由是因为人们(尤其是小孩)在开始学习数字的时候是由“一、二、三...”开始,而不是由“零、一、二、三...”开始, 因为这样是非常不自然的。自然数中,除了0就是正整数。正整数又可分为素数,1和合数。自然数组成的集合是一个可数的,无上界的无穷集合。数学家一般以N来表示它。自然数集上有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数。也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。
简单来说,自然数就是0和正整数。
而计算就是+-*/(加减乘除)