❶ 电气工程有哪三种接线方式
380伏三相四线电路中,任意两根火线之间的电压都是380伏,任意一根火线与零线之间都可以组成220伏。这个系统可以形成三种电源:即单相220伏电源,单相380伏电源,三相380伏电源,第一种家用比较多,第三种工厂里电机类用得多,第二种用得少,只有交流电焊机经常用到单相380伏电源。
❷ 电气安装:电气元件之间的连接方式是什么
1、呼应法
不画出各电气元件之间的边线,而是在对电气元件命名的基础上,对各电气元件的接线端子加以编号,编号的方法祥泰电气提示即:凡是用导线直接相连接在一起的端子,均编同一号码以遥相呼应
2、对号法
电器元件的接线端子旁标出引出线的回路标号(即线号)和另一端所接元件的文字符号,若去端子排时,除标端子排名称外,还要在分母上写上端子序号,端子排除标出回路标号外,还要标出两端元件的文字标号
祥泰电气——电器设备
3、线束法
要求画出各电气元件之间的连接导线,凡是走向相同的连线祥泰电气提示合并一根线来表示,故称其为线束,线束中的线可以中途汇合,也可分支,最终到达各自的接线端上,主回路与控制回路的线不能用同一束表示。
❸ 电气主接线有哪几种形式
1、线路变电所组接线
线路变压器组接线便是线路和变压器直接相连,是一种最简略的接线要领。线路变压器组接线的好处是断路器少,接线简略,造价省。相应220kV接纳线路变压器组,110kV宜接纳单母分段接线,正常分段断路器打开运行,对限定短路电流结果显着,较得当于110kV开环运行的网架。但其可靠性相对较差,线路妨碍检修停运时,变压器将被迫停运,对变电所的供电负荷影响较大。其较得当用于正常二运一备的城区中间变电所,如上海中间城区就有接纳。
2、桥形接线
桥形接线接纳4个回路3台断路器和6个隔离开关,是接线制止路器数量较少。也是投资较省的一种接线要领。根据桥形断路器的位置又可分为内桥和外桥两种接线。由于变压器的可靠性宏大于线路,因此中应用较多的为内桥接线。若为了在检修断路器时不影响和变压器的正常运行,偶然在桥形外附设一组隔离开关,这就成了长期开环运行的四边形接线。
3、多角形接线
多角形接线便是将断路器和隔离开关相互连接,且每一台断路器两侧都有隔离开关,由隔离开关之间送出回路。多角形接线所用配置少,投资省,运行的机动性和可靠性较好。正常环境下为双重连接,任何一台断路器检修都不影响送电,由于没有母线,在连接的任一部门妨碍时,对电网的运行影响都较小。其最紧张的缺点是回路数受到限定,因为当环形接线中有一台断路器检修时就要开环运行,此时当别的回路产生妨碍就要造成两个回路停电,扩大了妨碍停电范畴,且开环运行的时间愈长,这一缺点就愈大。环中的断路器数量越多,开环检修的机遇就越大,所一样平常只采四角(边)形接线和五角形接线,同时为了可靠性,线路和变压器接纳对角连接原则。四边形的掩护接线比力庞大,一。二次回路倒换操作较多。
4、单母线分段接线
单母线分段接线便是将一段母线用断路器分为两段,它的好处是接线简略,投资省,操作方便;缺点是母线妨碍或检修时要造成部门回路停电。
5、母线接线
双母线接线便是将事情线。电源线和出线议决一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是事情线,而每一回路都可议决母线团结断路器并列运行。
与单母线相比,它的好处是供电可靠性大,可以轮番检修母线而不使供电制止,当一组母线妨碍时,只要将妨碍母线上的回路倒换到另一组母线,就可敏捷光复供电,别的还具有调治。扩建。检修方便的好处;其缺点是每一回路都增长了一组隔离开关,使配电装置的构架及占地面积。投资费用都相应增长;同时由于配电装置的庞大,在变化运行要领倒闸操作时容易产生误操作,且不宜实现自动化;尤其当母线妨碍时,须短时切除较多的电源和线路,这对特别紧张的大型发电厂和变电站是不容许的。
6、母线带旁路接线
双母线带旁路接线便是在双母线接线的根本上,增设旁路母线。其特点是具有双母线接线的好处,当线路(主变压器)断路器检修时,仍有连续供电,但旁路的倒换操作比力庞大,增长了误操作的机遇,也使掩护及自动化体系庞大化,投资费用较大,一样平常为了节省断路器及配置隔绝,当出线到达5个回路以上时,才增设专用的旁路断路器,出线少于5个回路时,则接纳母联兼旁路或旁路兼母联的接线要领。
7、母线分段带旁路接线
双母线分段带旁路接线便是在双母线带旁路接线的根本上,在母线上增设分段断路器,它具有双母线带旁路的好处,但投资费用较大,占用配置隔绝较多,一样平常接纳此种接线的原则为:
(1)当配置连接的出入线总数为12~16回时,在一组母线上设置分段断路器;
(2)当配置连接的出入线总数为17回及以上时,在两组母线上设置分段断器。
8、3/2(4/3)断路器接线
3/2(4/3)断路器接线便是在每3(4)个断路器中间送出2(3)回回路,一样平常只用于500kV(或紧张220kV)电网的母线主接线。它的紧张好处是:
(1)运行调治机动,正常时两条母线和全部断路器运行,成多路环状供电;
(2)检修时操作方便,当一组母线停支时,回路不必要切换,任一台断路器检修,各回路仍按原接线要领霆,不需切换;
(3)运行可靠,每一回路由两台断路器供电,母线产生妨碍时,任何回路都不停电。
2/3(4/3)断路器接线的缺点是利用配置较多,特别是断路器和电流互感器,投资费用大,掩护接线庞大。
❹ 电气主接线的形式及优缺点介绍
电气主接线的形式有有母线接线、无母线的主接线。
(一)有母线接线
1、单母线接线
所有电源进线和引出线都连接于同一组母线上。单母线接线适于出线回路少的小型变配电所,一般供三级负荷,两路电源进线的单母线可供二级负荷。
优点:接线简单、设备少、操作方便、造价便宜,只要配电装置留有裕量,母线可以向两端延伸,可扩性好。
缺点:可靠性、灵活性差。母线故障、母线和母线隔离开关检修时,全部回路均需停运,造成全厂或全站长期停电;任一断路器检修时,其所在回路也将停运。
2、分段单母线接线
两路电源一用一备时,分段断路器接通运行。两路电源同时工作互为备用时,分段断路器则断开运行。
优点:两母线段可以分裂运行,也可以并列运行;重要用户可用双回路接于不同母线段,保证不间断供电;任意母线或隔离开关检修,只停该段,其余段可继续供电,减少了停电范围。
缺点:分段的单母线增加了分段部分的投资和占地面积;某段母线故障或检修时,仍有停电情况;某回路断路器检修时,该回路停电;扩建时需向两端均衡扩建。
3、双母线接线
每个回路经断路器和两组隔离开关分别接到两组母线上。
优点:开关是隔离状态,便于控制。
缺点:仅适用于有大量一、二级负荷的大型变配电所。
4、带旁路接线
优点:运行调度灵活,正常时两条母线和全部断路器运行,成多路环状供电;检修时操作方便,当一组母线停支时,回路不需要切换,任一台断路器检修,各回路仍按原接线方式霆,不需切换。
缺点:投资费用较大,占用设备间隔较多。
(二)无母线的主接线
5、线路-变压器组单元接线
优点:接线简单,设备少,经济性好。
缺点:只适于只有一台主变压器的小型变电所。
6、桥式接线
优点:能实现电源线路和变压器的充分利用。两台断路器接在引出线上,使引出线的操作灵活方便。当线路出现故障时,故障线路的断路器断开,自投装置将分段断路器投入,不影响变压器的运行。
缺点:在变压器投切操作时需要将相应的线路停电。
7、多角形接线
多角形接线就是将断路器和隔离开关相互连接,且每一台断路器两侧都有隔离开关,由隔离开关之间送出回路一种电气主接线的连接方式。
优点:多角形设备少,投资省,运行的灵活性和可靠性较好,止常情沉下为双重连接,任何一台断路器检修都不影响送电,由于没有母线,在连接的任一部分故障时,对电网的运行影响都较小。
缺点:同路数受到限制,因为当环形接线中有一台断路器检修时就要开环运行,此时当其它同路发生故障就要造成两个同路停电,扩大了故障停电范围,且开环运行的时间愈长,这一缺点就愈大,环中的断路器数量越多,开环检修的机会就越大。
❺ 原理图电气连接方式有哪几种
在原理图绘制中电气连接方式;并接:一根主线(母线)下的若干分支,即同一电源下的分出线。跨接:一个设备电源部分的分出线到另一个设备电源线。
❻ 电气连接除了焊锡还可能有哪些方法
物理连接还有螺栓、插件、触点等,还有通过线圈感应的,通过电容的
❼ 电气干线的连接方式有哪些
PE线在TN系统中表示接地线(保护接地),而PEN表示接零线(保护接零),前者正常工作状态下无电流通过,后者正常工作状态下有电流通过。如果两者串连,就将PE线(保护接地)视为N线,人有触电危险。
❽ 电气接线图原理详细解读
放大还是看得一点清楚 三绕组变压器 220/110/10 双母线的 三台主变
❾ 电线连接方法图解
一、导线连接的基本要求
导线连接是电工作业的一项基本工序,也是一项十分重要的工序。导线连接的质量直接关系到整个线路能否安全可靠地长期运行。对导线连接的基本要求是:连接牢固可靠、接头电阻小、机械强度高、耐腐蚀耐氧化、电气绝缘性能好。
二、常用连接方法需连接的导线种类和连接形式不同,其连接的方法也不同。常用的连接方法有绞合连接、紧压连接、焊接等。连接前应小心地剥除导线连接部位的绝缘层,注意不可损伤其芯线。
绞合连接是指将需连接导线的芯线直接紧密绞合在一起。铜导线常用绞合连接。
(1)单股铜导线的直接连接。小截面单股铜导线连接方法如图1所示,先将两导线的芯线线头作X形交叉,再将它们相互缠绕2~3圈后扳直两线头,然后将每个线头在另一芯线上紧贴密绕5~6圈后剪去多余线头即可。
图1
大截面单股铜导线连接方法如图2所示,先在两导线的芯线重叠处填入一根相同直径的芯线,再用一根截面约1.5mm2的裸铜线在其上紧密缠绕,缠绕长度为导线直径的10倍左右,然后将被连接导线的芯线线头分别折回,再将两端的缠绕裸铜线继续缠绕5~6圈后剪去多余线头即可。
图2
不同截面单股铜导线连接方法如图3所示,先将细导线的芯线在粗导线的芯线上紧密缠绕 5~6圈,然后将粗导线芯线的线头折回紧压在缠绕层上,再用细导线芯线在其上继续缠绕3~4圈后剪去多余线头即可。
图3
(2)单股铜导线的分支连接。单股铜导线的T字分支连接如图4所示,将支路芯线的线头紧密缠绕在干路芯线上5~8圈后剪去多余线头即可。对于较小截面的芯线,可先将支路芯线的线头在干路芯线上打一个环绕结,再紧密缠绕5~8圈后剪去多余线头即可。
图4
单股铜导线的十字分支连接如图5所示,将上下支路芯线的线头紧密缠绕在干路芯线上5~8圈后剪去多余线头即可。可以将上下支路芯线的线头向一个方向缠绕[见图5(a)],也可以向左右两个方向缠绕[见图 5(b)]。
图5
(3)多股铜导线的直接连接。多股铜导线的直接连接如图6所示,首先将剥去绝缘层的多股芯线拉直,将其靠近绝缘层的约1/3芯线绞合拧紧,而将其余2/3芯线成伞状散开,另一根需连接的导线芯线也如此处理。接着将两伞状芯线相对着互相插入后捏平芯线,然后将每一边的芯线线头分作3组,先将某一边的第1组线头翘起并紧密缠绕在芯线上,再将第2组线头翘起并紧密缠绕在芯线上,最后将第3组线头翘起并紧密缠绕在芯线上。以同样方法缠绕另一边的线头。
图6
(4)多股铜导线的分支连接。多股铜导线的T字分支连接有两种方法,一种方法是将支路芯线90°折弯后与干路芯线并行[见图7(a)],然后将线头折回并紧密缠绕在芯线上即可[见图7(b)]。
图7
另一种方法如图8所示,将支路芯线靠近绝缘层的约1/8芯线绞合拧紧,其余7/8芯线分为两组[见图8(a)],一组插入干路芯线当中,另一组放在干路芯线前面,并朝右边按图8(b)所示方向缠绕 4~5圈。再将插入干路芯线当中的那一组朝左边按图8(c)所示方向缠绕4~5圈,连接好的导线如图8(d)所示。
图8
(5)单股铜导线与多股铜导线的连接。单股铜导线与多股铜导线的连接方法如图9所示,先将多股导线的芯线绞合拧紧成单股状,再将其紧密缠绕在单股导线的芯线上5~8圈,最后将单股芯线线头折回并压紧在缠绕部位即可。
图9
(6)同一方向的导线的连接。当需要连接的导线来自同一方向时,可以采用图10所示的方法。对于单股导线,可将一根导线的芯线紧密缠绕在其他导线的芯线上,再将其他芯线的线头折回压紧即可。对于多股导线,可将两根导线的芯线互相交叉,然后绞合拧紧即可。对于单股导线与多股导线的连接,可将多股导线的芯线紧密缠绕在单股导线的芯线上,再将单股芯线的线头折回压紧即可。
图10
(7)双芯或多芯电线电缆的连接。双芯护套线、三芯护套线或电缆、多芯电缆在连接时,应注意尽可能将各芯线的连接点互相错开位置,可以更好地防止线间漏电或短路。图11(a)所示为双芯护套线的连接情况,图 11(b)所示为三芯护套线的连接情况,图11(c)所示为四芯电力电缆的连接情况。
图11
三、导线连接处的绝缘处理为了进行连接,导线连接处的绝缘层已被去除。导线连接完成后,必须对所有绝缘层已被去除的部位进行绝缘处理,以恢复导线的绝缘性能,恢复后的绝缘强度应不低于导线原有的绝缘强度。
导线连接处的绝缘处理通常采用绝缘胶带进行缠裹包扎。一般电工常用的绝缘带有黄蜡带、涤纶薄膜带、黑胶布带、塑料胶带、橡胶胶带等。绝缘胶带的宽度常用20mm的,使用较为方便。
1.一般导线接头的绝缘处理
一字形连接的导线接头可按图12所示进行绝缘处理,先包缠一层黄蜡带,再包缠一层黑胶布带。将黄蜡带从接头左边绝缘完好的绝缘层上开始包缠,包缠两圈后进入剥除了绝缘层的芯线部分[见图12(a)]。包缠时黄蜡带应与导线成55°左右倾斜角,每圈压叠带宽的1/2[见图12(b)],直至包缠到接头右边两圈距离的完好绝缘层处。然后将黑胶布带接在黄蜡带的尾端,按另一斜叠方向从右向左包缠[见图12(c)、图12(d)],仍每圈压叠带宽的1/2,直至将黄蜡带完全包缠住。包缠处理中应用力拉紧胶带,注意不可稀疏,更不能露出芯线,以确保绝缘质量和用电安全。对于220V线路,也可不用黄蜡带,只用黑胶布带或塑料胶带包缠两层。在潮湿场所应使用聚氯乙烯绝缘胶带或涤纶绝缘胶带。
图12
2.T字分支接头的绝缘处理
导线分支接头的绝缘处理基本方法同上,T字分支接头的包缠方向如图13所示,走一个T字形的来回,使每根导线上都包缠两层绝缘胶带,每根导线都应包缠到完好绝缘层的两倍胶带宽度处。
图13
3.十字分支接头的绝缘处理
对导线的十字分支接头进行绝缘处理时,包缠方向如图14所示,走一个十字形的来回,使每根导线上都包缠两层绝缘胶带,每根导线也都应包缠到完好绝缘层的两倍胶带宽度处。
❿ 电气连接的电气连接分类
电气连接分类:
一般按照电气连接组件的位置,电气产品中的电气连接组件可以分为外部电气连接组件和内部电气连接组件两大部分。外部电气连接组件是指产品外壳(电气外壳)外部的所有电气连接组件,这些电气连接组件由于不包括在产品外壳(电气外壳)的防护之内,因此,必须单独满足相应的电击防护要求。内部电气连接组件是指产品外壳(电气外壳)内部的所有电气连接组件,这些电气连接组件由于包括在产品外壳(电气外壳)的防护之内,因此,一般只需要满足相应的功能绝缘要求即可。以常见的电饭煲为例(见图),它使用电源线组件和供电电网连接提供工作电源,电源线组件通过耦合器与电饭锅的内部实现连接,耦合器通过内部导线连接到内部控制器(限温器、热熔断体)及发热管等部件上,形成电气回路。
一、定义
电气连接包括:接线端子、PCB连接器、工业连接器、接线盒、重载连接器、电缆、电缆接头、安全栅、接触件等。 为了统一术语,一般所称的电气连接是指狭义上的电气连接,而使用电气连接组件来指广义上的电气连接。
用 途: 电气连接广泛应用于电子、电气、工业生产、基础建设、化工、港口、机械、国防、工业控制等领域。
二、
设备组成部件
一般电气连接组件主要由电气连接部件(例如接线端子等)、电线电缆、电线固定装置和电线保护装置(例如单独的电线护套等)等部件组成。
电气连接部件通过提供适当的机械作用力,将不同的导体部件可靠地固定在一起,实现电气连接。电气连接部件的关键作用在于提供可靠的连接,避免不同导体之间出现接触不良而引起危险。电气连接部件通常由非金属支撑部件和金属连接部件组成,非金属支撑部件作为支撑基础,除了要求能够在长期工作中起到绝缘的作用外,还要求能够承受使用中所支撑导体的发热,不会出现导致危险的变形(对于热塑性材料而言,可以通过球压测试来验证。),并且有一定的阻燃等级,不会成为潜在的火源。
电线电缆作为主要的载流部件,除了要求有足够的载流能力之外,还要求有足够的机械强度和绝缘特性,以满足使用中的电击防护要求。
为了确保电气连接的长期有效,一般应采取有效措施,避免电线电缆在电气连接部位承受过分的机械应力。通常的解决方法是在电气连接部位附近使用附加固定方式来固定电线电缆,也就是俗称的电线电缆"双重固定方法"。
以下分别介绍外部电气连接组件和内部电气连接组件在设计时应当注意的问题。
外部电气连接组件
常见的外部电气连接组件主要是产品的电源连接组件,常见的电源连接组件主要有以下几种结构。
1.电源插头-电线护套-电源线-电线护套-电线固定装置-内部电源连接结构
这种结构是一种使用得最普遍的电源连接方式,使用时只需要将产品的电源插头插入合适的电源插座内,产品就可以正常使用。为了保证安全,产品的电源插头应当符合相应国家和地区的标准,与供电电网的电源插座匹配。在使用时,应当避免使用电源转换插头,尤其是那些大功率的电气产品。在市场上,一些转换插头甚至只提供两极转换,而将接地插头浮空,这无形中破坏了Ⅰ类产品的电击防护系统,是非常危险的。
2.电源线组件(包括电源插头-电线护套-电源线-电线护套-耦合器)-耦合器-内部电源连接结构。
这种结构最显着的特点是,电源线组件可以方便、自由地取下而不会影响产品的安全特性。例如,对于一些销往不同国家和地区的产品,尤其是大量的IT类产品,往往可以通过仅仅更换电源线组件的方式就可以在不同的国家和地区使用,大大降低了产品生产制造过程中的库存压力。此外,电源线组件可以从产品上取下,还可以减小产品的体积,提高产品使用的舒适性。
为了提高产品的适用性,大部分的耦合器都是采取标准化结构的(执行标准IEC 60320、IEC 60309或等效的国家和地区标准),以便于实现耦合器的互换性。在选用耦合器时,除了要考虑耦合器的规格、参数外,还需要注意耦合器的工作环境限制。普通的耦合器属于冷环境使用,即在耦合器插脚温度不超过70°C的情形下使用,如果需要在更高温度的情形下使用耦合器,必须选用热环境或高热环境使用的耦合器。
此外,还有许多产品使用非标准化的耦合器以提高产品的使用舒适性。无论是使用标准耦合器还是非标准耦合器,在结构上都必须保证耦合器的连接器在使用时不会起到支撑的作用。同时,在接通过程中耦合器的结构能够保证相极同时接通,并且接地极(如果有)比相极先接通;而在断开过程中耦合器的结构能够保证相极同时断开,并且接地极(如果有)比相极后断开。
3.电源连接端子排
这种类型的外部电气连接组件一般只是在使用固定布线连接(Fixed Wiring)方式的电气产品中使用。这种连接方式的特点是直接将外部电源线连接到产品的电源连接端子排上。电源连接端子排必须在旁边明确、清楚地标识出正确的接线方式;同时,为了避免在连接外部电源线时对内部布线产生影响,外部电源线不允许与内部导线共用同一个端口。
使用这种连接方式的产品时,使用者无法通过拔下电源插头的方式来完全切断产品的电源,因此,一般要求产品必须装备电源全极断开装置(即能够同时断开所有电源连接的开关,并且开关触头断开后能够至少满足基本绝缘的要求),或者在安装说明上强调必须在固定布线中配备全极断开装置。
需要注意的是,以往有许多用于固定布线安装的产品不提供电源端子排,而仅仅提供电源引线。然而,根据许多国家和地区的相关技术安全法规,这种结构的产品一般是不允许在市场上直接销售的,除非提供可靠固定且清晰标识的电源端子排。
4.直插式结构
直插式结构的产品直接将电源插头铸造在产品的外壳上,使用时将整个产品插到电源插座上。使用这种结构的产品的特点是体积较小,结构紧凑,但是对产品的生产制造工艺要求较高,尤其是对电源插头部分的公差要求较高,并且在设计时必须注意在插入电源插座时,手和插座电极之间必须有足够的距离。
为了避免使用中对插座产生过量的机械应力(一般要求对插座产生的附加力矩小于0.25Nm),产品直插部分的质量一般都在500g以内。常见的直插式结构的产品主要有小型电源适配器、充电器。此外,直插式产品在使用中还要求不会产生震动,因此,这种结构的产品通常不能直接用于加热液体或者带有电动部件。
内部电气连接组件
内部电气连接组件包括电源接线端、各种内部电气连接部件、内部导线及其护套等,至于绕组则一般不认为包括在内部电气连接组件的范围内,但是印制电路板则可以认为是一种特殊的内部电气连接组件。
内部电气连接部件的类型很多,既可以是各种螺纹型或无螺纹型接线端子,也可以是各种接插件,甚至可以是钳压连接、缠绕、焊接等连接部件。
电源接线端是用于连接外部电源线的接线端。如果产品允许根据需要更换电源线,那么,电源线接线端通常采用端子排的形式(螺纹型或无螺纹型的都可以),并且应当在端子排旁边明确、清楚地标识出正确的接线方式;同时,为了避免在连接外部电源线时对内部布线产生影响,外部电源线不允许与内部导线共用同一个端口。此外,为了避免电源线固定装置失效时出现电击的危险,对于Ⅰ类电气产品而言,一旦出现电源线受到外力被拔出的情形时,相线应当比接地线先被绷紧和脱落。
对于内部导线,同样需要根据工作电流的大小选用截面积合适的导线。内部的截面积可以根据实际工作电流的大小进行选用,不一定需要与电源线的截面积相同。在实际生产装配过程中,一些工厂为了避免混淆不同截面积的导线,通常会使用不同的颜色来区分不同截面积的导线,此时需要注意有黄-绿组合的双色标识导线应只用作保护接地导线。选用内部导线时,还要注意一般不应选用铝线。
内部导线由于处在外壳防护下,因此,在机械强度、绝缘等方面的要求都比外部电源线的要求较低,基本绝缘的导线甚至裸露导线在一定情形下都是允许使用的。需要注意的是,由于布线等原因(例如连接产品不同部位之间的导线)裸露在外、使用中可以被接触的导线,虽然它们在许多场合被称为内部导线(相对电源线而言),但是在产品安全领域,这些导线由于不在外壳防护下,因此同样属于外部电气连接组件的一部分,应当参照电源线来进行要求,除非它们属于安全特低电压(SELV)电路。
在内部布线的结构安排上,应注意以下几点。
内部导线应当有效地固定,使用线扎将多股内部导线扎在一起进行固定是实际中常见的固定方式,但必须注意线扎的耐热特性和老化问题。
裸露的内部布线必须是刚性的,并且使用机械方式可靠固定,在正常使用中不可能发生移位情况,防止由此导致爬电距离、电气间隙过小而引起短路或电击危险。
防止导线与运动部件接触,避免运动部件刮、擦导线而损坏导线的绝缘。 对于可能与锐利边、棱接触的导线,应当提供外加护套,避免在正常使用时因为移动、震动等而损坏导线的绝缘。
内部导线应当远离热源,导线周围环境的温度不应超过导线允许使用的温度范围。对于热源附近的导线,应当选用适当的耐高温导线或采取适当的隔热措施,例如使用耐热套管等。
印制电路板可以认为是一种特殊的内部电气连接组件,但是由于印制电路板是依靠铜箔实现电气连接的,因此,印制电路板的载流能力是不强的,这一点在设计时必须充分注意。
在内部电气连接中,有两种常见的问题需要特别注意。
一个问题是焊接可靠性的问题。除了关注虚焊等传统的工艺问题外,必须注意焊接对多股软线的影响。多股软线在焊接后,焊锡凝固的部位无法像原来一样保持柔韧性,因此,软线在焊接的交界部位会因为机械应力、震动等原因而逐渐断裂,因此,多股软线的固定一般不可以依赖于焊接。同时,为了避免断开后的导线自由移动而影响内部的电气间隙、爬电距离,在多股软线焊接部位的附近应当有附加的固定装置。例如,可以使用热缩套管来同时固定导线绝缘和焊接部位。总之,尽量减小焊接交界部位的受力。对于一些焊接端有孔眼的情形,只要导线穿过的孔眼不过大,除了箔线以外,在焊接前勾进孔眼也是一种合适的方法。至于缠绕后焊接的情形,焊接的部位应当是在顶端,以便缠绕部分能够起到附加固定的作用。
此外,还应注意近年来多个国家和地区对焊锡中含铅量的限制问题。越来越多的焊接已经采用无铅焊接工艺,但是工艺要求相对较高,而且可能出现的"锡须"对电气间隙、爬电距离等会有影响。这是未来电气产品安全领域需要关注的一个重点问题。
另一个问题是电气连接中的压力传递问题。一般,为了维持接触的可靠性,确保回路的载流能力,尤其是对于通过的电流超过0.5A的情形,电气连接(包括提供保护接地连续性的连接)的接触压力不应当依靠易于收缩或变形的绝缘材料来保持、传递,除非是陶瓷材料。使用有弹力的金属部件来进行压力补偿,是实践中一种有效的方法。