A. 高中物理12种解题方法与技巧与操作
其实高中物理考试常见的类型无非包括以下12种,这12种常见题型的解题方法和思维模板,还介绍了高考各类试题的解题方法和技巧,提供各类试题的答题模版,飞速提升你的解题能力,如何才能学好物理呢?我在这里整理了相关资料,快来学习学习吧!
高中物理12种解题方法与技巧
1直线运动问题
题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.
思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.
2物体的动态平衡问题
题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题.
思维模板:常用的思维方法有两种
(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;
(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.
3运动的合成与分解问题
题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.
思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。
(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。
4抛体运动问题
题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.
思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;
(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解
5圆周运动问题
题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况.
思维模板:
(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力.
(2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动.
6牛顿运动定律的综合应用问题
题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.
思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律.
对天体运动类问题,应紧抓两个公式:
GMm/r2=mv2/r=mrω2=mr4π2/T2 ①。GMm/R2=mg ②.对于做圆周运动的星体(包括双星、三星系统),可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化.
7机车的启动问题
题型概述:机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式P=Fv和牛顿第二定律的公式F-f=ma来分析.
思维模板:(1)机车以额定功率启动.机车的启动过程如图所示,由于功率P=Fv恒定,由公式P=Fv和F-f=ma知,随着速度v的增大,牵引力F必将减小,因此加速度a也必将减小,机车做加速度不断减小的加速运动,直到F=f,a=0,这时速度v达到最大值vm=P额定/F=P额定/f.
这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力).
(2)机车以恒定加速度启动.恒定加速度启动过程实际包括两个过程.如图所示,“过程1”是匀加速过程,由于a恒定,所以F恒定,由公式P=Fv知,随着v的增大,P也将不断增大,直到P达到额定功率P额定,功率不能再增大了;“过程2”就保持额定功率运动.过程1以“功率P达到最大,加速度开始变化”为结束标志.过程2以“速度最大”为结束标志.过程1发动机做的功只能用W=F·s计算,不能用W=P·t计算(因为P为变功率).
8以能量为核心的综合应用问题
题型概述:以能量为核心的综合应用问题一般分四类.第一类为单体机械能守恒问题,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系(能量守恒)问题.多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体.
思维模板:能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律.
(1)动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;
(2)能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;
(3)机械能守恒定律只是能量守恒定律的一种特殊形式,但在力学中也非常重要.很多题目都可以用两种甚至三种方法求解,可根据题目情况灵活选取.
9力学实验中速度的测量问题
题型概述:速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、验证机械能守恒等实验中都要进行速度的测量.速度的测量一般有两种方法:一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度.
思维模板:用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:①vt/2=v平均=(v0+v)/2,②Δx=aT2,为了尽量减小误差,求加速度时还要用到逐差法.用光电门测速度时测出挡光片通过光电门所用的时间,求出该段时间内的平均速度,则认为等于该点的瞬时速度,即:v=d/Δt.
10电容器问题
题型概述:电容器是一种重要的电学元件,在实际中有着广泛的应用,是历年高考常考的知识点之一,常以选择题形式出现,难度不大,主要考查电容器的电容概念的理解、平行板电容器电容的决定因素及电容器的动态分析三个方面.
思维模板:
(1)电容的概念:电容是用比值(C=Q/U)定义的一个物理量,表示电容器容纳电荷的多少,对任何电容器都适用.对于一个确定的电容器,其电容也是确定的(由电容器本身的介质特性及几何尺寸决定),与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关
(2)平行板电容器的电容:平行板电容器的电容由两极板正对面积、两极板间距离、介质的相对介电常数决定,满足C=εS/(4πkd)
(3)电容器的动态分析:关键在于弄清哪些是变量,哪些是不变量,抓住三个公式[C=Q/U、C=εS/(4πkd)及E=U/d]并分析清楚两种情况:一是电容器所带电荷量Q保持不变(充电后断开电源),二是两极板间的电压U保持不变(始终与电源相连).
11带电粒子在电场中的运动问题
题型概述:带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,研究方法与质点动力学一样,同样遵循运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计?算题?.
思维模板:
(1)处理带电粒子在电场中的运动问题应从两种思路着手①动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、速度等物理量.②功能思路:根据电场力及其他作用力对带电粒子做功引起的能量变化或根据全过程的功能关系,确定粒子的运动情况(使用中优先选择).
(2)处理带电粒子在电场中的运动问题应注意是否考虑粒子的重力
①质子、α粒子、电子、离子等微观粒子一般不计重力;
②液滴、尘埃、小球等宏观带电粒子一般考虑重力;
③特殊情况要视具体情况,根据题中的隐含条件判断.
(3)处理带电粒子在电场中的运动问题应注意画好粒子运动轨迹示意图,在画图的基础上运用几何知识寻找关系往往是解题的突破口.
12带电粒子在磁场中的运动问题
题型概述:带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简单的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种:
(1)突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量(半径、速度、时间、周期等)的考查;
(2)突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主;
(3)突出本部分知识在实际生活中的应用的考查,以对思维能力和理论联系实际能力的考查为主.
思维模板:在处理此类运动问题时,着重把握“一找圆心,二找半径(R=mv/Bq),三找周期(T=2πm/Bq)或时间”的分析方法.
(1)圆心的确定:因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的f的方向,沿两个洛伦兹力f作出其延长线的交点即为圆心.另外,圆心位置必定在圆中任一根弦的中垂线上.
(2)半径的确定和计算:利用平面几何关系,求出该圆的半径(或运动圆弧对应的圆心角),并注意利用一个重要的几何特点,即粒子速度的偏向角(φ)等于圆心角(α),并等于弦AB与切线的夹角(弦切角θ)的2倍(如图所示),即?φ=α=2θ.
(3)运动时间的确定:t=φT/2π或t=s/v,其中φ为偏向角,T为周期,s为轨迹的弧长,v为线速度。
高中物理解题中的心理操作
一、物理解题概述
近年来解题研究指出:一个问题是指一个不能及时达到的目标,为求达到这个目标所作的体力或心理的行动叫做问题解决。解题时必须要遵从一定的法则。故一个问题应包括以下几个环节:(1)始态(initialstate)──问题所给予的已知情况,物理习题中的已知条件;(2)终态(goglstate) ──解题时要达到的最终目标,物理题中的所求;(3)操作法则(operator)──应用这些法则把问题由始态转变成终态,在物理解题中包括要符合的物理定律原理也要符合人们认识的规律。
在解题过程中,解题者要由始态开始,通过一系列的问题态,到达终态。由始态到终态的所有问题态构成了问题空间,而问题态的转变需要解题者作出某些心理操作,这样就构造了解题的心理图象。这心理图象是个人化的,它因人而异,它所包含的信息可以较问题本身的信息为多或为少,它是受解题者贮存在长期记忆里知识的影响。也就是说,解题者根据自己已有的知识来构造心理图象和寻找题解。许多时,问题空间很大,容许操作的法则也很多。就是一题多解;有时问题空间虽然很大,容许操作的法则却很有限,相应的问题解法也就较少。
解题过程也是一个非常复杂的信息处理过程,解题者则是一个信息处理系统,解题就是系统跟问题的相互作用。解题取决于这个信息处理系统的特性和问题结构。问题结构限制解题的过程,提供一些可行的行动;解题者的特性是指他短期记忆的容量,长期记忆贮存的知识和贮藏及提取这些知识所需的时间,贮藏的知识“模块”(基题)越多,提取这些“模块”的速度越快,解题的效率就越高。
二、物理解题中的心理操作
解题时,将题目所描述的物理现象译成物理图象输入大脑暂时储存,而后大脑将进行一系列复杂的心理操作,使问题得以解决。进行心理操作,一是要有操作对象,二是要有一定的操作规则(包括操作的先后次序)。物理解题中的心理操作对象是贮存于大脑长久记忆中物理知识的基本模块。而这些“模块”信息量的大小,集成化程度的高低,因人而异,各不相同。操作规则必须符合本门学科的原理和人们认识的规律。所谓心理操作是指对这些“模块”进行加工、组合、衔接、再造的心理过程。没有这些“模块”,心理操作就失去了原料。不能要求一个毫无物理知识的人去解物理题,不论他如何聪明,也不会解出物理题来,道理很简单,因为在他大脑的长久记忆里没有贮存加工的“模块”,巧妇难为无米之炊就是这个道理。
物理解题的心理操作一般分三个阶段进行:
第一阶段为检索提取阶段。当要解的习题输入大脑后,一旦被吸引去开始解决时,我们原有的知识经验和实践知觉就会向着一定问题的方向去变化、检索、识别而后提取贮存于大脑长期记忆里相近、相似的“模块”。这些“模块”可以是物理某部分、某单元的知识,也可以是同类型的基本习题。第一阶段的工作为第二阶段的加工提供了原料和必要的准备。当然,对于一个复杂的问题,不见得一次就能将“模块”提取的十分准确,有时在加工的过程中还可反复检索,反复提取。
第二阶段为沟通加工阶段。这一阶段是心理操作十分重要的阶段,它包括采纳、排除、分解、组合、迁移、选择、改造、衔接:沟通等操作环节。通过以上的操作,使问题空间逐步确定,逐步明朗。沟通思路,形成策略。在这了阶段要对原有的“模块”加工再造,重新进行组织,大脑皮层的暂时神经联系在有些部位出现新的开通,有些部位产生暂时关闭,进行新的改组,这时候新的创造思维就会产生。解题从某个角度讲就是一种创造,当解决别人从未解决的问题时更是如此。
在进行操作时,有时需要把整体“模块”分成元件,直至不能再分。把每一个“模块”所含的元素按需要排列,按需要将上述被分解的元素重新组合,依所提供的信息充分想象,还要克服思维定势的影响,使问题空间逐步确定,形成解题策略。
第三个阶段为反馈输出阶段,经过第二阶段的沟通加工,方案策略已经形成,再经过编辑、优化、计算、检验,使被加工的信息系统化、条理化,这就达到了问题的终态。这时将已加工完毕的信息分为两部分:一部分通过职能器官输出,一部分又回输(反馈)到大脑成为新的“模块”贮于长期记忆。我们将心理操作过程用框图示意如下:
心理操作是个人化的思维图式。有些人在问题空间中漫无边际的思索,但无法组织,终无所获。有些人却能在问题空间中用极为有限的搜寻来代替几乎无法穷尽的搜索,甚至有条不紊地走向目的,不出现任何尝试的错误。
三、解题实例分析
例1,一个质量为m,带有电荷为q的物件可在水平轨道ox运动,O端有一与轨道垂直的固定墙。轨道处于匀强电场中,场强的大小为E,h向沿ox是正向,如图二所示,小物体以初速vo从xo沿ox轨道运动,运动时受到大小不变的摩擦力f作用,且f<eq,设小物体与墙碰撞时不损失机械能,且电量保持不变,求它在停止运动前所通过的总路程s0(1989年高考题) p=""> </eq,设小物体与墙碰撞时不损失机械能,且电量保持不变,求它在停止运动前所通过的总路程s0(1989年高考题)>
解:如果我们将上述问题所描述的物理现象进行分析,将会从大脑的长期记忆中提取“电势能”、“动能”、“摩擦力作功”、“功能原理”四个基本知识模块。而这四个模块间有什么联系,是怎样衔接起来的呢?下面我们分两种情况来讨论:如果没有摩擦力,由于物体与墙壁的碰撞井不损失能量,因此物体的功能和电势能可以互相转化,但功能和电势能的总和是守恒的;在有摩擦力的情况下,摩擦力的方向与小物体的运动方向相反,动能和电势能都会逐渐减少,最后将停在O点。这就是小物体克服摩擦力所做的功等于减少的动能和电势能之和。我们可以用框图表示如下:
“模块2”与“模块3”从不同的方面描写了物体状态的变化,“模块1”描写克服摩擦力作功的过程。物体状态的变化,显然是因摩擦力作功而引起,这样“模块1” 与“模块2、3”之间就有了困果联系,而二者的定量关系是由“模块4”(功能原理)衔接起来的。因为本问题所求物体的后路程是与过程量功密不可分的物理量,同样出现在作功的全过程中,所以提取摩擦力作功的模块是有道理的。依照图三列式计算并不困难,此处计算从略。
例2,如图所示,在水平光滑的桌面上放一个质量为M的玩具小车,和小车的平台(小车的一部分)上有一质量可以忽略的弹簧。一端固定在平台,另一端用质量为m的小球将弹簧压缩一定距离后用细线捆住,用手将小车固定在桌面上,然后烧断线,小球就被弹出,落在车上A点。如果小车不固定而烧断细线,球将落在车上何处?设小车足够长。球不致落在车外。(1987年高考题)
解:本题可以分小车动与不动两种情况,四个基本物理过程,即“小车不动时小球的平抛运动”,“小车动时小球与小车的相互作用”、“小球对小车的相对运动”,“小车动时小球的平抛运动”。每一个物理过程可以认为是储存了一定信息的模块。每个模块统摄了许多物理知识,为小球的乎抛运动,包括了平抛的运动学特性,重力作用的瞬时效应,空间积累效应,时间积累效应,小车动时情况更复杂。但是经过分解、筛选可以发现四个过程都与速度紧密相连,这就有可能通过速度将四个物理过程联系起来,如框图所示:
在图五中已图示了每一“模块”的从属关系,所应满足的物理规律以及它们之间相互联系的衔接条件。这样解题的思路已经沟通,再构造数学模型去解是并不难的。
例3,一根细绳跨过一定滑轮,两端分别有质量为m及M的物体,如图六,且
M>m,M静止在地面上,当m自由下落h距离后,绳子开始与m、M相互作用,在极短时间内绳子被拉紧,求绳子刚刚被拉紧时,M能上升的最大高度?
解:本题整个的物理过程可分为三个阶段。第一阶段:m作自由落体运动。第二阶段:绳子分别与物体相互作用。第三阶段:m及M分别作匀变速运动。三个阶段的联系是:第一阶段m作自由落体运动的末速度v恰是第二阶段m与绳相互作用前的初速度。第二阶段m、M与绳子相互作用后的速度V就是第三阶段M作变速运动的初速度。如图七所示。
从图七我们可以看出每一个阶段实质上就是一个知识“模块”,但每一“模块”所包含的知识容量并不相同,每一“模块”有各自的特点和应该满足的规律。这些规律就是操作规则。这三个“模块”自然地衔接起来就构成了一个完整清晰的图象,再计算是不难的。
人类认识的理论不仅要解释人怎样进行复杂的思维和解题工作,还要解释人是怎样学会这么作的。研究解题者对物理问题构造的心理图象,目的是了解他们对物理知识的组织和加工能力。在物理学习上重理解轻记忆的作法是不足取的,也是没有根据的。解题的成功者在于他们拥有高度组织的物理知识,并在记忆中贮藏了不少相类似问题的题解。在物理教学中只让学生盲目作题,不讲习题的沟通和演变、不引导学生作正确的定性分析也是不可取的。凡成功的解题者,解题策略好的,大都是先对问题作定性分析,探索到解题思路后,才作定量分析。
B. 高考物理得高分的几个小窍门 物理高分技巧
一、主干、要害知识重点处置
高中物理
清楚明确整个高中物理知识框架的同时,对主干知识(如牛顿定律、动量定理、动量守恒、能量守恒、闭合电路欧姆定律、带电粒子在电场、磁场中的运动特点、法拉第电磁感应定律、全反射现象等)公式来源、使用条件、罕见应用特别要反复熟练,弄懂弄通的基础上抓各种知识的综合应用、横向联系,形成纵横交错的网络。
二、熟练、灵活掌握解题方法
基本方法:审题技巧、分析思路、选择规律、建立方程、求解运算、验证讨论等
技巧方法:指一些特殊方法如整体法、隔离法、模型法、等效法、极端假设法、图象法、极值法等
习题训练中,应拿出一定时间反复强化解题时的一般方法,以形成良好的科学思维习惯,此基础上辅以特殊技巧,将事半功倍。
此外,还应掌握三优先四分析的解题策略,即优先考虑整体法、优先考虑动能定理、优先考虑动量定理;分析物体的受力情况、分析物体的运动情况、分析力做功的情况、分析物体间能量转化情况。形成有机划、多角度、多侧面的解题方法网络。
三、物理专题训练要有的放矢
专题训练的主要目的通过解题方法指导,总结出同类问题的一般解题方法与其变形、变式。而且要特别注意四类综合题的系统复习:
1、强调物理过程的题,要分清物理过程,弄清各阶段的特点、相互之间的关系、选择物理规律、选用解题方法、形成解题思路。
2、模型问题,如平衡问题、追击问题、人船问题、碰撞问题、带电粒子在复合场中的加速、偏转问题等,只要将物理过程与原始模型合理联系起来,就容易解决。
3、技巧性较高的题目,如临界问题、模糊问题,数理结合问题等,要注意隐含条件的挖掘、关键点突破、过程之间衔接点确定、重要词的理解、物理情景的创设,逐步掌握较高的解题技巧。
4、信息给予题。方法:1阅读理解,发现信息(2提炼信息,发现规律(3运用规律,联想迁移(4类比推理,解答问题
四、强化高考物理解题格式规范化
1、对概念、规律、公式表达要明确无误
2、对图式分析、文字说明、列方程式、简略推导、代入数据、计算结果、讨论结论等步骤应完整、全面、不可缺少
3、无论是文字说明还是方程式推导都应简洁明了言简意赅,注意单位的统一性和物理量的一致性。
高考物理规范解题的要求
一、要明确研究对象,如:以***为研究对象。有的题目涉及的物体比拟多,这时明确研究对象是很重要的必需针对不同的问题灵活选取研究对象。
二、作必要的示意图或函数图象要规范
三、要说明研究对象所经历的物理过程。不同的物理过程所对应的函数关系式就不同,对不同的过程必需一一说明。
四、列方程式要规范
首先,列方程所依据的物理规律、定理、公式一定要加以文字说明,如:由***定理得。
其次,列方程的字母要规范,题设中没有说明的字母在应用时必须加以说明,如:设物体a速度为v等。
最后,所列方程必须是用题设中字母表示的原始式子,而不是变形式或带入数据之后的式子,如:不要直接用r=mv/qb,而应先写出qvb=mv2/r
高考物理得高分的几个小窍门就分享到这里,更多内容请关注高考物理答题技巧栏目。
问题:想自学学习物理,有什么学习方法能提升效率?
答:可以去网上找物理学习的视频自己学习,把握每一章的重点、难点、易错点。因为新知识如果自己去看的话很难有一个系统的把握,也抓不住重点,效率比较低。跟着视频学习过之后自己再把学过的内容梳理一遍,需要理解和记忆一定要掌握熟练,然后进行练习巩固。同时准备一个错题本,把平时练习做错的题认真整理总结,经常拿出来复习巩固。
问题:基础没学好,现在想补上来该从哪几方面来学。
答:课前做好预习,课上紧跟老师的进度学习新知识,在课堂上做好笔记,把课上没有听懂的内容赶紧记下来,课下及时的请教老师或者同学把问题解决掉。在学习新知识时如果遇到以前学过但没有掌握的知识时,用笔记记下来,然后课下抽时间解决掉。在学习时我建议你从基础入手,把每一个物理量的定义、表达式、性质、单位等都理解掌握,把该记的公式记牢固,然后课下有掌握不牢固的地方复习巩固之后及时的做题巩固,平时进行大量的练习,通过练习来提高知识的熟练度。
问题:物理题海战术真的有效吗?
答:真实有效!前提要做没有做过的题或者是针对某个没有掌握的知识点的题,从题中学习分析问题的方法和一些简便的解题技巧,还有就是对知识熟练度进行巩固提升。
问题:上课老师讲的好像都听得懂,就是考试不知道做?
答:老师讲的是老师的思路,听的时候虽然能听懂,但是由于自己没有独立思考,所以思维练不上去,看别人做事情,不代表自己就会做,平时练习的时候一定要静下来心来思考,如果做不出来询问老师的时候一定要把自己的想法说出来,让老师给你指出具体哪个位置分析不正确。
C. 高考物理压轴题分析与解题思路及技巧
蜜蜂优课坤哥物理二轮 2020高考二轮压轴题专项班 大题难题尽在此(15G高清视频)网络网盘
链接: https://pan..com/s/1Aojno0l1kU5iqlmnrp4svg
若资源有问题欢迎追问~
D. 高中物理选择题解题技巧如何得高分
距离2018年高考越来越近了,很多考生都在寻找解题技巧。下面我整理了一些 物理 选择题解题技巧,供大家参考!
1、在做物理选择题的时候,首先要注意看清题目。尤其是物理选择题题干中的关键词,像是错误的、可能的、一定的等等,以免丢了冤枉分。对于解答物理选择题,越是简单的题目,越要仔细看。对于物理多选题,不敢肯定的答案,宁可不选也不要选错。
2、高中物理选择题一般考察的是学生对于基本知识和基本规律的理解和运用。考生在答物理选择题时,对于已经作出判断的题目,不要轻易的作出改动。在检查时,只有肯定你的答案是错误的,而另一个答案百分之百正确时,才能作出改动,这一点对于成绩中等偏下的学生尤其重要。
3、高中物理选择题是所有学科中难度最大的,但是如果方法选择的好,解决起来还是有迹可循的。想要快速的解决物理选择题,就必须要充分的利用题目中的已知条件,深度利用各种信息,尽可能的使复杂的问题简单化,从而提高物理选择题的正确率。
最牛高考励志书,淘宝搜索《高考蝶变》购买!
4、有些物理选择题,在解答的时候根据它描述的物理一般情况,较难直接判断选择的正误时,可以利用特例赋值法,把某些物理量取特殊值,代入到物理选择题选项中逐个进行检验,凡事特殊值检验证明不正确的选项,一定是错误的,就可以排除了。
5、很多物理选择题可以利用图像法解决,考生可以根据题目的内容来画出图像或是示意图,然后利用图像分析寻找答案,这样便于了解各物理量之间的关系,这样可以避免繁琐的计算,迅速的找出正确的物理选择题答案。
6、很多物理选择题在解题过程中,可以用逆向思维法来解。很多物理过程都具有可逆性,当正向解题思维分析受到阻碍时,就可以反其道而之,另辟蹊径,逆向思考,这样常常可以化难为易,出奇制胜。
E. 史上最全的初中物理做题技巧和方法总结
史上最全的初中物理做题技巧和方法总结
一、概念——学习物理的基础
物理概念和术语是学习物理学的基础,只有熟练掌握才能抓住问题的实质和关键。学习物理概念的方法有五种:
1、分类法
对所学概念进行分类,找出它们的相同点和不同点,初中物理学的概念可分为四小类①概念的物理量是几个物理量的积,例如:功、热量;②概念是几个物理量的比值,如:速度、密度、压强、功率、效率;③概念反应物质的属性,例如:密度、比热、燃烧值、熔点、沸点、电阻率、摩擦系数等;④概念没有定义式,只是描述性的,如力、沸点、温度。
2、对比法
对于反映两个互为可逆的物理量可用这种方法进行学习,例如:熔解与凝固、汽化与液化、升华与凝华、有用功与额外功。
3、比较法
对于概念中有相同字眼的相似相关概念利用相比较学习的方法可以找出相同点和不同点,建立内在联系。例如“重力”与“压力”、“压力与压强”、“功与功率”、“功率与效率”“虚像与实像”、“放大与变大”等。
4、归类法
把相关联的概念进行分组比较便于形成知识系统。例如:①力、重力、压力、浮力、平衡力、作用力与反作用力。②速度、效率、功率、压强。③杠杆、支点、动力、阻力、动力臂、阻力臂、力的作用线。④熔解、液化、蒸发、沸腾、汽化、液化、升华、凝华。⑤串联、并联、混联。⑥通路、短路、断路。⑦能、机械能、功能、势能。
5、要点法
抓住概念中关键字眼进行学习,例如“重力”由于地球的吸引而受到的竖直向上的力叫重力,这个概念中“地球的吸引”“竖直向下”就是关键字眼,值得反复回味和理解。
二、公式——学习物理的钥匙
每一个公式都有一定的适用范围,不能乱用,每一个字母都有着特定含义,需要理解,例如P=F/S中“S”指两物全接触的公共面积,这个公式既适用于固体,也可适用于液体和气体,而P=ρ物gh来说适用范围就更小,只适用规则固体物体放在水平面上产生的`压强。我们面对每一个公式不能机械记忆其等量关系,广州中考助手物理老师建议应从以下五个方面进行扩展,这样才能形成知识体系,提升学习物理的效率。
1、根据公式想物理概念,对于ρ=m/V,V=S/t,P=F/S,W=F·S可以记:单位体积某物体的质量叫物质的密度。
2、根据公式记单位,记住物理量的国际单位、常用单位、单位进率。
3、根据公式想变形公式,多进行这样的训练有利于扩展思维,提高分析问题的能力。
4、根据公式记影响物理量的因素,例如从f=Fμ记影响滑动摩擦力大小因素是压力大小和接触面的粗糙程度,且成正比,又如通过P=F/S记影响压强大小的因素,其实质是乘积式或比值式的物理量都可以采用这种方法。
5.通过公式想实验。
公式是实验的原理所在,从公式中想所要测的物理量,从所测物理量想所需的实验器材,再进一步想实验过程,操作过程中的注意事项。
三、规律——学习物理的关键
物理规律是人们通过长期努力从生活实践中总结出来的重要结论,必须深入领会,加强理解,为了帮助记忆,我们通过口诀方式归纳如下:
1、弹簧秤原理:弹性限度是条件,伸长缩短很关键,变化包括两方面,外力可拉也可压。
2、惯性定律:不受外力是条件,保持匀直或静止,平衡效果合为零,相当没有受外力。
3、阿基米德原理:物体浸在液体中,要受浮力不密底,排开液体的重量,V排ρ液乘以g
4、功的原理:任何机械不省功,总功有用额外和,对物对功才有用,机械绳重摩擦额。
5、杠杆平衡条件:静止不动匀转动,力乘力臂积相等,支点受力画力线,作出力臂是关键。
6、反射定律:三线共面两角等,成像都是虚像的,物像镜面对称轴,镜面凹面均适用。
7、折射规律:两种媒质密不同,三线共面角不等,密度大中角度小,垂入射很特殊。
8、欧姆定律:同一导体同状态,电压电阻定电流,电阻导体本属性,材料长短粗细温。
9、焦耳定律:通电导体产生热,I平电阻乘时间,电能全部转热,纯阻两推经常用。
10、串联电路:串联电流路一条,电流大小处处等。总阻总压各部和,正比关系归电阻。
11、并联电路:并联电压处处等,干路电流支路和。总倒等于各倒和,反比关系归电阻。
12、安培定则:通电导体产生磁,电流方向定磁场。右手握螺旋管,四指电流拇指北。
13、滑动摩擦力:压力粗糙成正比,滑动大于滚动的,匀速直线或静止,根据平衡力来求。
14、大气压强:高度温度和湿度,睛夏高于阴和冬,海拔高度2千内,上升12下降1。
15、物体沉浮:浮力重力相比较,也可比较物液密。物小漂浮悬浮等,物大液密必下沉。
16、决定电阻大小因素:温度一定看材料,长度正比截面反,拉长压缩很特殊,四倍关系要分清。
17、决定蒸发快慢的因素:蒸发吸热要致冷,快慢因素三方面,温度高低接触面,空气流动摇扇子。
18、影响沸点的因素:沸腾沸点要吸热,沸点高低看气压,高山气低沸点低,高压锅内温度高。
19、晶体熔解:吸热升温倒熔点,熔解过程温不变。熔点温度物状态,固态液态或共存。
四、仪器——学习物理学的工具
学习物理的基本方法是观察法和实验法。熟悉物理学中的各种仪器是进行观察实验的基础。能正确使用各种仪器,就能很好地学习物理。
1、总纲:根据需要选器材,范围零刻最小值,使用规则认真记,记录准确加估读。
2、刻度尺:水平放置零对齐,刻线紧贴视线垂,特殊方法四小类,积小成多曲线替。
F. 高中物理怎么总结解题方法,技巧!!!!!
高中物理考试常见的类型无非包括以下16种,本文介绍了这16种常见题型的解题方法和思维模板,还介绍了高考各类试题的解题方法和技巧,提供各类试题的答题模版,飞速提升你的解题能力,力求做到让你一看就会,一想就通,一做就对!
题型1直线运动问题
题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.
思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.
题型2物体的动态平衡问题
题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题.
思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.
题型3运动的合成与分解问题
题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.
思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析.
题型4抛体运动问题
题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.
思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解
题型5圆周运动问题
题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况.
思维模板:(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力.
(2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动.
题型6牛顿运动定律的综合应用问题
题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.
思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律.
对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2①。GMm/R2=mg②.对于做圆周运动的星体(包括双星、三星系统),可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化.
题型7机车的启动问题
题型概述:机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式P=Fv和牛顿第二定律的公式F-f=ma来分析.
思维模板:(1)机车以额定功率启动.机车的启动过程如图所示,由于功率P=Fv恒定,由公式P=Fv和F-f=ma知,随着速度v的增大,牵引力F必将减小,因此加速度a也必将减小,机车做加速度不断减小的加速运动,直到F=f,a=0,这时速度v达到最大值vm=P额定/F=P额定/f.
这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力).
(2)机车以恒定加速度启动.恒定加速度启动过程实际包括两个过程.如图所示,“过程1”是匀加速过程,由于a恒定,所以F恒定,由公式P=Fv知,随着v的增大,P也将不断增大,直到P达到额定功率P额定,功率不能再增大了;“过程2”就保持额定功率运动.
过程1以“功率P达到最大,加速度开始变化”为结束标志.过程2以“速度最大”为结束标志.过程1发动机做的功只能用W=F·s计算,不能用W=P·t计算(因为P为变功率).
题型8以能量为核心的综合应用问题
题型概述:以能量为核心的综合应用问题一般分四类.第一类为单体机械能守恒问题,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系(能量守恒)问题.多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体.
思维模板:能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律.(1)动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;(2)能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;(3)机械能守恒定律只是能量守恒定律的一种特殊形式,但在力学中也非常重要.很多题目都可以用两种甚至三种方法求解,可根据题目情况灵活选取.
题型9力学实验中速度的测量问题
题型概述:速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、验证机械能守恒等实验中都要进行速度的测量.速度的测量一般有两种方法:一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度.
思维模板:用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:①vt/2=v平均=(v0+v)/2,②Δx=aT2,为了尽量减小误差,求加速度时还要用到逐差法.用光电门测速度时测出挡光片通过光电门所用的时间,求出该段时间内的平均速度,则认为等于该点的瞬时速度,即:v=d/Δt.
题型10电容器问题
题型概述:电容器是一种重要的电学元件,在实际中有着广泛的应用,是历年高考常考的知识点之一,常以选择题形式出现,难度不大,主要考查电容器的电容概念的理解、平行板电容器电容的决定因素及电容器的动态分析三个方面.
思维模板:
(1)电容的概念:电容是用比值(C=Q/U)定义的一个物理量,表示电容器容纳电荷的多少,对任何电容器都适用.对于一个确定的电容器,其电容也是确定的(由电容器本身的介质特性及几何尺寸决定),与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关.
(2)平行板电容器的电容:平行板电容器的电容由两极板正对面积、两极板间距离、介质的相对介电常数决定,满足C=εS/(4πkd)
(3)电容器的动态分析:关键在于弄清哪些是变量,哪些是不变量,抓住三个公式[C=Q/U、C=εS/(4πkd)及E=U/d]并分析清楚两种情况:一是电容器所带电荷量Q保持不变(充电后断开电源),二是两极板间的电压U保持不变(始终与电源相连).
题型11带电粒子在电场中的运动问题
题型概述:带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,研究方法与质点动力学一样,同样遵循运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计算题.
思维模板:(1)处理带电粒子在电场中的运动问题应从两种思路着手
①动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、速度等物理量.
②功能思路:根据电场力及其他作用力对带电粒子做功引起的能量变化或根据全过程的功能关系,确定粒子的运动情况(使用中优先选择).
(2)处理带电粒子在电场中的运动问题应注意是否考虑粒子的重力
①质子、α粒子、电子、离子等微观粒子一般不计重力;
②液滴、尘埃、小球等宏观带电粒子一般考虑重力;
③特殊情况要视具体情况,根据题中的隐含条件判断.
(3)处理带电粒子在电场中的运动问题应注意画好粒子运动轨迹示意图,在画图的基础上运用几何知识寻找关系往往是解题的突破口.
题型12带电粒子在磁场中的运动问题
题型概述:带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简单的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种:
(1)突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量(半径、速度、时间、周期等)的考查;(2)突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主;(3)突出本部分知识在实际生活中的应用的考查,以对思维能力和理论联系实际能力的考查为主.
思维模板:在处理此类运动问题时,着重把握“一找圆心,二找半径(R=mv/Bq),三找周期(T=2πm/Bq)或时间”的分析方法.
(1)圆心的确定:因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的f的方向,沿两个洛伦兹力f作出其延长线的交点即为圆心.另外,圆心位置必定在圆中任一根弦的中垂线上(如图所示).
看大图
(2)半径的确定和计算:利用平面几何关系,求出该圆的半径(或运动圆弧对应的圆心角),并注意利用一个重要的几何特点,即粒子速度的偏向角(φ)等于圆心角(α),并等于弦AB与切线的夹角(弦切角θ)的2倍(如图所示),即φ=α=2θ.
(3)运动时间的确定:t=φT/2π或t=s/v,其中φ为偏向角,T为周期,s为轨迹的弧长,v为线速度.
题型13带电粒子在复合场中的运动问题
题型概述:带电粒子在复合场中的运动是高考的热点和重点之一,主要有下面所述的三种情况.
(1)带电粒子在组合场中的运动:在匀强电场中,若初速度与电场线平行,做匀变速直线运动;若初速度与电场线垂直,则做类平抛运动;带电粒子垂直进入匀强磁场中,在洛伦兹力作用下做匀速圆周运动.
(2)带电粒子在叠加场中的运动:在叠加场中所受合力为0时做匀速直线运动或静止;当合外力与运动方向在一直线上时做变速直线运动;当合外力充当向心力时做匀速圆周运动.
(3)带电粒子在变化电场或磁场中的运动:变化的电场或磁场往往具有周期性,同时受力也有其特殊性,常常其中两个力平衡,如电场力与重力平衡,粒子在洛伦兹力作用下做匀速圆周运动.
思维模板:分析带电粒子在复合场中的运动,应仔细分析物体的运动过程、受力情况,注意电场力、重力与洛伦兹力间大小和方向的关系及它们的特点(重力、电场力做功与路径无关,洛伦兹力永远不做功),然后运用规律求解,主要有两条思路.
(1)力和运动的关系:根据带电粒子的受力情况,运用牛顿第二定律并结合运动学规律求解.
(2)〖JP3〗功能关系:根据场力及其他外力对带电粒子做功的能量变化或全过程中的功能关系解决问题.(该部分内容在《试题调研》高分宝典系列之《高考决战压轴大题》第72页到114页有更详细的讲解,请同学们参阅)
题型14以电路为核心的综合应用问题
题型概述:该题型是高考的重点和热点,高考对本题型的考查主要体现在闭合电路欧姆定律、部分电路欧姆定律、电学实验等方面.主要涉及电路动态问题、电源功率问题、用电器的伏安特性曲线或电源的U-I图像、电源电动势和内阻的测量、电表的读数、滑动变阻器的分压和限流接法选择、电流表的内外接法选择等.有关实验的内容在《试题调研》第4辑中已详细讲述过,这里不再赘述.
思维模板:
(1)电路的动态分析是根据闭合电路欧姆定律、部分电路欧姆定律及串并联电路的性质,分析电路中某一电阻变化而引起整个电路中各部分电流、电压和功率的变化情况,即有R分→R总→I总→U端→I分、U分
(2)电路故障分析是指对短路和断路故障的分析,短路的特点是有电流通过,但电压为零,而断路的特点是电压不为零,但电流为零,常根据短路及断路特点用仪器进行检测,也可将整个电路分成若干部分,逐一假设某部分电路发生某种故障,运用闭合电路或部分电路欧姆定律进行推理.
(3)导体的伏安特性曲线反映的是导体的电压U与电流I的变化规律,若电阻不变,电流与电压成线性关系,若电阻随温度发生变化,电流与电压成非线性关系,此时曲线某点的切线斜率与该点对应的电阻值一般不相等.
电源的外特性曲线(由闭合电路欧姆定律得U=E-Ir,画出的路端电压U与干路电流I的关系图线)的纵截距表示电源的电动势,斜率的绝对值表示电源的内阻.
题型15以电磁感应为核心的综合应用问题
题型概述:此题型主要涉及四种综合问题
(1)动力学问题:力和运动的关系问题,其联系桥梁是磁场对感应电流的安培力.
(2)电路问题:电磁感应中切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,这样,电磁感应的电路问题就涉及电路的分析与计算.
(3)图像问题:一般可分为两类,一是由给定的电磁感应过程选出或画出相应的物理量的函数图像;二是由给定的有关物理图像分析电磁感应过程,确定相关物理量.
(4)能量问题:电磁感应的过程是能量的转化与守恒的过程,产生感应电流的过程是外力做功,把机械能或其他形式的能转化为电能的过程;感应电流在电路中受到安培力作用或通过电阻发热把电能转化为机械能或电阻的内能等.
思维模板:解决这四种问题的基本思路如下
(1)动力学问题:根据法拉第电磁感应定律求出感应电动势,然后由闭合电路欧姆定律求出感应电流,根据楞次定律或右手定则判断感应电流的方向,进而求出安培力的大小和方向,再分析研究导体的受力情况,最后根据牛顿第二定律或运动学公式列出动力学方程或平衡方程求解.
(2)电路问题:明确电磁感应中的等效电路,根据法拉第电磁感应定律和楞次定律求出感应电动势的大小和方向,最后运用闭合电路欧姆定律、部分电路欧姆定律、串并联电路的规律求解路端电压、电功率等.
(3)图像问题:综合运用法拉第电磁感应定律、楞次定律、左手定则、右手定则、安培定则等规律来分析相关物理量间的函数关系,确定其大小和方向及在坐标系中的范围,同时注意斜率的物理意义.
(4)能量问题:应抓住能量守恒这一基本规律,分析清楚有哪些力做功,明确有哪些形式的能量参与了相互转化,然后借助于动能定理、能量守恒定律等规律求解.
题型16电学实验中电阻的测量问题
题型概述:该题型是高考实验的重中之重,每年必有命题,可以说高考每年所考的电学实验都会涉及电阻的测量.针对此部分的高考命题可以是测量某一定值电阻,也可以是测量电流表或电压表的内阻,还可以是测量电源的内阻等.
思维模板:测量的原理是部分电路欧姆定律、闭合电路欧姆定律;常用方法有欧姆表法、伏安法、等效替代法、半偏法等.
G. 物理技巧
解题技巧
八类物理解题方法 一、观察的几种方法 1、顺序观察法:按一定的顺序进行观察。 2、特征观察法:根据现象的特征进行观察。 3、对比观察法:对前后几次实验现象或实验数据的观察进行比较。 4、全面观察法:对现象进行全面的观察,了解观察对象的全貌。 二、过程的分析方法 1、化解过程层次:一般说来,复杂的物理过程都是由若干个简单的“子过程”构成的。因此,分析物理过程的最基本方法,就是把复杂的问题层次化,把它化解为多个相互关联的“子过程”来研究。 2、探明中间状态:有时阶段的划分并非易事,还必需探明决定物理现象从量变到质变的中间状态(或过程)正确分析物理过程的关键环节。 3、理顺制约关系:有些综合题所述物理现象的发生、发展和变化过程,是诸多因素互相依存,互相制约的“综合效应”。要正确分析,就要全方位、多角度的进行观察和分析,从内在联系上把握规律、理顺关系,寻求解决方法。 4、区分变化条件:物理现象都是在一定条件下发生发展的。条件变化了,物理过程也会随之而发生变化。在分析问题时,要特别注意区分由于条件变化而引起的物理过程的变化,避免把形同质异的问题混为一谈。 三、因果分析法 1、分清因果地位:物理学中有许多物理量是通过比值来定义的。如R=U/R、E=F/q等。在这种定义方法中,物理量之间并非都互为比例关系的。但学生在运用物理公式处理物理习题和问题时,常常不理解公式中物理量本身意义,分不清哪些量之间有因果联系,哪些量之间没有因果联系。 2、注意因果对应:任何结果由一定的原因引起,一定的原因产生一定的结果。因果常是一一对应的,不能混淆。 3、循因导果,执果索因:在物理习题的训练中,从不同的方向用不同的思维方式去进行因果分析,有利于发展多向性思维。 四、原型启发法 原型启发就是通过与假设的事物具有相似性的东西,来启发人们解决新问题的途径。能够起到启发作用的事物叫做原型。原型可来源于生活、生产和实验。如鱼的体型是创造船体的原型。原型启发能否实现取决于头脑中是否存在原型,原型又与头脑中的表象储备有关,增加原型主要有以下三种途径:1、注意观察生活中的各种现象,并争取用学到的知识予以初步解释;2、通过课外书、电视、科教电影的观看来得到;3、要重视实验。 五、概括法 概括是一种由个别到一般的认识方法。它的基本特点是从同类的个别对象中发现它们的共同性,由特定的、较小范围的认识扩展到更普遍性的,较大范围的认识。从心理学的角度来说,概括有两种不同的形式:一种是高级形式的、科学的概括,这种概括的结果得到的往往是概念,这种概括称为概念概括;另一种是初级形式的、经验的概括,又叫相似特征的概括。 相似特征概括是根据事物的外部特征对不同事物进行比较,舍弃它们不相同的特征,而对它们共同的特征加以概括,这是知觉表象阶段的概括,结果往往是感性的,是初级的。要转化为高级形式的概括,必须要在经验概括的基础上,对各种事物和现象作深入的分析、综合,从中抽象出事物和现象的本质属性,舍弃非本质的属性。 六、归纳法 归纳方法是经典物理研究及其理论建构中的一种重要方法。它要解决的主要任务是:第一由因导果或执果索因,理解事物和现象的因果联系,为认识物理规律作辅垫。第二透过现象抓本质,将一定的物理事实(现象、过程)归入某个范畴,并找到支配的规律性。完成这一归纳任务的方法是:在观察和实验的基础上,通过审慎地考察各种事例,并运用比较、分析、综合、抽象、概括以及探究因果关系等一系列逻辑方法,推出一般性猜想或假说,然后再运用演绎对其进行修正和补充,直至最后得到物理学的普遍性结论。比较法返回 比较的方法,是物理学研究中一种常用的思维方法,也是我们经常运用的一种最基本的方法。这种方法的实质,就是辩析物理现象、概念、规律的同中之异,异中之同,以把握其本质属性。 七、类比法 类比是由一种物理现象,想象到另一种物理现象,并对两种物理现象进行比较,由已知物理现象的规律去推出另一种物理现象的规律,或解决另一种物理现象中的问题的思维方法,类比不但可以在物理知识系统内部进行,还可以将许多物理知识与其他知识如数学知识、化学知识、哲学知识、生活常识等进行类比,常能起到点化疑难、开拓思路的作用。 八、假设推理法 假设推理法是一种科学的思维方法,这就要求我们针对研究对象,根据物理过程,灵活运用规律,大胆假设,突破思维方法上的局限性,使问题化繁为简,化难为易。主要有下面几方面内容: 1、物理过程假设 2、物理线路假设 3、推理过程假设 4、临界状态假设 5、矢量方向假设。
应试技巧
一.整体把握:
仔细审题、联想思路。
分步列式、重视第一步。
尽量列标准方程,式子无法反映的用文字。
列方程不打草稿,错了先写后划。
有疑问的题做记号,做完后复查。
不定分数指标。会做的争取都得分,不会做的争取做一点。
题容易时要细心,题难时要想到别人也做不出的。
如果思考超过5分钟还没有思路,则快速跳过,基本做到用3/4的时间能够浏览整张试卷,了解难易程度,做到心里有底。
二.选择题技巧:
1.由简至难,一道题的用时不超过5分钟,没有思路的尽快跳过,以保证做题速度。
2.多选题吃不准的选项不选,宁愿未选全少扣,也不选错多扣,考试后尽快弄懂。
3.注意题目中的关键字和条件,准确快速判断题目所涉及的知识点的章节。
4.选择题八种解题技巧:
直接判断法:
通过观察,直接利用题目中所给的条件,根据所学知识和规律得出正确结果。这些题目主要用于考查学生对物理知识的记忆和理解程度,属于基础题。
逐步淘汰法:
经过分析和计算,将不符合题干的选项逐一排除,最终留下符合题干要求的选项。如果选项是完全肯定或否定的判断,可采用举反例的方式排除;如果选项中有相互矛盾的两种叙述,则两者中至多有一个正确。
特值代入法:
将某些物理量取特殊值,通过简单的分析、计算后进行判断。它仅适用于将特殊值代入各选项后能将错误选项均排除的选择题,即单一选择题。
极限分析法:
将某些物理量推向极端,并根据一些显而易见的结果或熟悉的物理现象进行计算(如摩擦系数取零或无穷大、电源内阻取零或无穷大等),可收到事半功倍的效果。
作图分析法:
“图”在物理中有着十分重要的地位,它是将抽象物理问题直观化、形象化的最佳工具。中学物理常用的“图”有示意图、过程图、函数图、矢量图、电路图和光路图等。若题干和选项中已给出函数图,需从图像纵、横坐标的物理意义,图线中“点”、“线”、“斜率”、“截距”和“面积”等诸多方面寻找解题的突破口。用图像法解题不但快速、准确,而且还可以避免繁杂的中间运算过程,甚至可以解决用计算分析法无法解决的问题。
整体分析法:
当题干所涉及到的物体有多个时,把多个物体所构成的系统作为一个整体进行研究是一种常规的解题思路,特别是当题干所要分析和求解的物理量不涉及系统内部物体间的相互作用时。
转换思维法:
有些问题用常规的思维方法求解很繁琐,而且容易陷入困境。如果我们能灵活地转换一下研究对象,或者利用逆向思维,或者采用等效变换等思维方法,则往往可以“绝处逢生”。
模型思维法:
物理模型是一种理想化的物理形态,是物理知识的一种直:观表现。模型思维法是利用抽象化、理想化、简化、类比等手段,突出主要因素,忽略次要因素,把研究对象的物理本质特征抽象出来,从而研究、处理物理问题的一种思维方法。
三.填空题技巧:
填空题三种类型:
1.直接记忆型填空(概念、规律、常数、单位等),靠记忆快速准确应答,不会的多想也想不出,须跳过放弃。
2.分析型填空(根据实验现象、数据的分析,物理规律的分析,物理图形、函数图像的分析等),分析题目要考的知识点,尤其注意图像题。
3.计算型填空(实际是计算题,需要填的只是计算的答案)注意答案要按题目要求填写。
解题要点:
对概念性和规律性的问题回答要求用词简练、到位,要用科学、规范的物理术语表述。
对计算性的问题回答要准确,包括数字的位数、单位、正负号等,对比例性的计算千万不要前后颠倒。
四.实验题技巧:
设计实验的方法:
由物理量的定义式出发设计
比例法
替代法
比较法
积累法测微小量
用电学量测量力学量、热学量
做到实验题,要沉着冷静,回想课本上熟悉的实验进行类比;遇到难题或复杂的题,仔细读题审题,抓住关键条件,心中要想别的同学也一样觉得题目很难,一个空一个空地做,不要放弃。
五.计算题技巧:
(1)要明确已知条件和相对隐含条件,确定主要解题步骤。
(2)分析判断,找到解题的理论依据。
(3)分清各个物理过程、状态及其相互联系。
(4)计算过程应正确、规范。要正确写出有关的公式,正确代入公式中物理量的数字和单位。能画图的可以作图辅佐解题。
(5)遇到不会的题目,先联想题目所涉及的章节,列出知识点,公式。在试卷上写出相关的公式,求出自己明确的物理量,争取多得步骤分。
(6)可以通过单位的统一性,检查有些题目结果的对错。
H. 高中物理68个解题技巧
如下:
1、见物思理,多观察,多思考。
物理讲的是“万物之理”,在我们身边到处都蕴含着丰富的、取之不尽用之不竭的物理知识。只要我们保持一颗好奇之心,注意观察各种自然现象和生活现象。
2、学会从“定义”去寻找错因。
对于基本公式,规律,概念要特别重视。“死记知识永远学不好物理!”最聪明的学生都会从基本公式和概念上去寻找错误的根源,并且能够做到从一个错题能复习一大片知识——这是一个学生学习物理是否开窍的最重要的标志!
3、把“陌生”变成“透彻”。
遇到陌生的概念,比如“势能”“电势”“电势差”等等先不要排斥,要先去真心接纳它,再通过听老师讲解、对比、应用理解它。要有一种“不破楼兰终不还”的决心和“打破沙锅问到底”的研究精神。这样时间长了,应用多了,陌生的就变成了透彻的了。
4、把“错题”变成“熟题”。
建立错题本。在建立错题本时,不要两天打鱼三天晒网,要持之以恒,不能半途而废。尤其注意建立错题本的方法和技巧,要有自己的创新、智慧以及汗水凝结在里面,力求做到赏心悦目,让人看了赞不绝口,自己看了会赞美自己的杰作。
5、不管学哪一部分内容都要抓住重点,抓住主干。
俗话说“打蛇打七寸”,抓住要害就等于抓住了命脉。而每一本书、每一单元、每一节课、每个练习都有关键考察点和关键的解决方法。这些就是物理中的“命脉”所在。
I. 高中物理解题技巧
八类物理解题方法 一、观察的几种方法 1、顺序观察法:按一定的顺序进行观察。 2、特征观察法:根据现象的特征进行观察。 3、对比观察法:对前后几次实验现象或实验数据的观察进行比较。 4、全面观察法:对现象进行全面的观察,了解观察对象的全貌。 二、过程的分析方法 1、化解过程层次:一般说来,复杂的物理过程都是由若干个简单的“子过程”构成的。因此,分析物理过程的最基本方法,就是把复杂的问题层次化,把它化解为多个相互关联的“子过程”来研究。 2、探明中间状态:有时阶段的划分并非易事,还必需探明决定物理现象从量变到质变的中间状态(或过程)正确分析物理过程的关键环节。 3、理顺制约关系:有些综合题所述物理现象的发生、发展和变化过程,是诸多因素互相依存,互相制约的“综合效应”。要正确分析,就要全方位、多角度的进行观察和分析,从内在联系上把握规律、理顺关系,寻求解决方法。 4、区分变化条件:物理现象都是在一定条件下发生发展的。条件变化了,物理过程也会随之而发生变化。在分析问题时,要特别注意区分由于条件变化而引起的物理过程的变化,避免把形同质异的问题混为一谈。 三、因果分析法 1、分清因果地位:物理学中有许多物理量是通过比值来定义的。如R=U/R、E=F/q等。在这种定义方法中,物理量之间并非都互为比例关系的。但学生在运用物理公式处理物理习题和问题时,常常不理解公式中物理量本身意义,分不清哪些量之间有因果联系,哪些量之间没有因果联系。 2、注意因果对应:任何结果由一定的原因引起,一定的原因产生一定的结果。因果常是一一对应的,不能混淆。 3、循因导果,执果索因:在物理习题的训练中,从不同的方向用不同的思维方式去进行因果分析,有利于发展多向性思维。 四、原型启发法 原型启发就是通过与假设的事物具有相似性的东西,来启发人们解决新问题的途径。能够起到启发作用的事物叫做原型。原型可来源于生活、生产和实验。如鱼的体型是创造船体的原型。原型启发能否实现取决于头脑中是否存在原型,原型又与头脑中的表象储备有关,增加原型主要有以下三种途径:1、注意观察生活中的各种现象,并争取用学到的知识予以初步解释;2、通过课外书、电视、科教电影的观看来得到;3、要重视实验。 五、概括法 概括是一种由个别到一般的认识方法。它的基本特点是从同类的个别对象中发现它们的共同性,由特定的、较小范围的认识扩展到更普遍性的,较大范围的认识。从心理学的角度来说,概括有两种不同的形式:一种是高级形式的、科学的概括,这种概括的结果得到的往往是概念,这种概括称为概念概括;另一种是初级形式的、经验的概括,又叫相似特征的概括。 相似特征概括是根据事物的外部特征对不同事物进行比较,舍弃它们不相同的特征,而对它们共同的特征加以概括,这是知觉表象阶段的概括,结果往往是感性的,是初级的。要转化为高级形式的概括,必须要在经验概括的基础上,对各种事物和现象作深入的分析、综合,从中抽象出事物和现象的本质属性,舍弃非本质的属性。 六、归纳法 归纳方法是经典物理研究及其理论建构中的一种重要方法。它要解决的主要任务是:第一由因导果或执果索因,理解事物和现象的因果联系,为认识物理规律作辅垫。第二透过现象抓本质,将一定的物理事实(现象、过程)归入某个范畴,并找到支配的规律性。完成这一归纳任务的方法是:在观察和实验的基础上,通过审慎地考察各种事例,并运用比较、分析、综合、抽象、概括以及探究因果关系等一系列逻辑方法,推出一般性猜想或假说,然后再运用演绎对其进行修正和补充,直至最后得到物理学的普遍性结论。比较法返回 比较的方法,是物理学研究中一种常用的思维方法,也是我们经常运用的一种最基本的方法。这种方法的实质,就是辩析物理现象、概念、规律的同中之异,异中之同,以把握其本质属性。 七、类比法 类比是由一种物理现象,想象到另一种物理现象,并对两种物理现象进行比较,由已知物理现象的规律去推出另一种物理现象的规律,或解决另一种物理现象中的问题的思维方法,类比不但可以在物理知识系统内部进行,还可以将许多物理知识与其他知识如数学知识、化学知识、哲学知识、生活常识等进行类比,常能起到点化疑难、开拓思路的作用。 八、假设推理法 假设推理法是一种科学的思维方法,这就要求我们针对研究对象,根据物理过程,灵活运用规律,大胆假设,突破思维方法上的局限性,使问题化繁为简,化难为易。主要有下面几方面内容: 1、物理过程假设 2、物理线路假设 3、推理过程假设 4、临界状态假设 5、矢量方向假设。