导航:首页 > 计算方法 > 灰度共生矩阵计算方法

灰度共生矩阵计算方法

发布时间:2022-02-15 01:11:06

A. 灰度共生矩阵怎么用MATLAB实现

matlab提供了现成的函数
graycomatrix生成共生矩阵
graycoprops计算其特征值

具体用法:
glcm = graycomatrix(I)
从图像I创建灰度共生矩阵glcm。通过计算具有灰度级i和灰度级j的像素对在水平方向相邻出现的频繁程度。glcm中的每个元素说明了水平方向相邻像素对出现的次数。如果灰度级为L则glcm的维数为L*L。
2.glcms = graycomatrix(I,param1,val1,param2,val2,...)
根据参数对的设定,返回一个或多个灰度共生矩阵。
参数说明:
'GrayLimits':灰度界限,为二元向量[low high]。灰度值小于等于low 时对应1,大于等于high时对应于灰度级。如果参数设为[],则共生矩阵使用图像的最小和最大灰度值作为界限,即[min(I(:)) max(I(:))]。
'NumLevels':整数,说明I中进行灰度缩放的灰度级数目。例如,如果NumLevel设为8,则共生矩阵缩放I中的灰度值使它们为1到8之间的整数。灰度级的数目决定了共生矩阵glcm的尺寸。缺省情况:数字图像:8;二进制图像:2。
'Offset':p行2列整型矩阵,说明感兴趣像素与其相邻像素之间的距离。每行是一个说明像素对之间偏移关系的二元向量[row_offset, col_offset]。行偏移row_offset是感兴趣像素和其相邻像素之间的间隔行数。列偏移同理。偏移常表达为一个角度,常用的角度如下:(其中D为像素距离)
角度 0 45 90 135
Offset [0,D] [-D D] [-D 0] [-D -D]
3.[glcms,SI] = graycomatrix(...)
返回缩放图像SI,SI是用来计算灰度共生矩阵的。SI中的元素值介于1和灰度级数目之间。
graycoprops:得到灰度共生矩阵得到各种属性
stats = graycoprops(glcm, properties):从灰度共生矩阵glcm计算静态属性。glcm是m*n*p的有效灰度共生矩阵。如果glcm是一个灰度共生矩阵的矩阵,则stats是包括每个灰度共生矩阵静态属性的矩阵。
graycoprops正规化了灰度共生矩阵,因此元素之和为1。正规化的GLCM中的元素(r,c)是具有灰度级r和c的定义的空间关系的像素对的联合概率。Graycoprops使用正规化的GLCM来计算属性。
属性参数如下:
1. 'Contrast' : 对比度。返回整幅图像中像素和它相邻像素之间的亮度反差。取值范围:[0,(GLCM行数-1)^2]。灰度一致的图像,对比度为0。
2. 'Correlation' : 相关。返回整幅图像中像素与其相邻像素是如何相关的度量值。取值范围:[-1,1]。灰度一致的图像,相关性为NaN。
3. 'Energy' : 能量。返回GLCM中元素的平方和。取值范围:[0 1]。灰度一致的图像能量为1。
4. 'Homogemeity' : 同质性。返回度量GLCM中元素的分布到对角线紧密程度。取值范围:[0 1]。对角矩阵的同质性为1。

B. 一幅高光谱图像的基于灰度共生矩阵的纹理特征怎么计算

常见的统计量有:
能量、对比度、熵、均匀性、均值、方差、非相似度、相关性。它们从不同的角度反映了
影像的灰度分布、信息量及纹理粗细度。

C. 如何提高灰度共生矩阵的计算效率

灰度共生矩阵
共生矩阵用两个位置的象素的联合概率密度来定义,它不仅反映亮度的分布特性,也反映具有同样亮度或接近亮度的象素之间的位置分布特性,是有关图象亮度变化的二阶统计特征。它是定义一组纹理特征的基础。
一幅图象的灰度共生矩阵能反映出图象灰度关于方向、相邻间隔、变化幅度的综合信息,它是分析图象的局部模式和它们排列规则的基础。
设f(x,y)为一幅二维数字图象,其大小为M×N,灰度级别为Ng,则满足一定空间关系的灰度共生矩阵为
P(i,j)=#{(x1,y1),(x2,y2)∈M×N|f(x1,y1)=i,f(x2,y2)=j}
其中#(x)表示集合x中的元素个数,显然P为Ng×Ng的矩阵,若(x1,y1)与(x2,y2)间距离为d,两者与坐标横轴的夹角为θ,则可以得到各种间距及角度的灰度共生矩阵P(i,j,d,θ)。
纹理特征提取的一种有效方法是以灰度级的空间相关矩阵即共生矩阵为基础的[7],因为图像中 相距(Δx,Δy)的两个灰度像素同时出现的联合频率分布可以用灰度共生矩阵来表示。若将图像的灰度级定为N级,那么共生矩阵为N×N矩阵,可表示为 M(Δx,Δy)(h,k),其中位于(h,k)的元素mhk的值表示一个灰度为h而另一个灰度为k的两个相距为(Δx,Δy)的像素对出现的次数。
对粗纹理的区域,其灰度共生矩阵的mhk值较集中于主对角线附近。因为对于粗纹理,像素对趋于具有相同的灰度。而对于细纹理的区域,其灰度共生矩阵中的mhk值则散布在各处。
为了能更直观地以共生矩阵描述纹理状况,从共生矩阵导出一些反映矩阵状况的参数,典型的有以下几种:
(1)能量: 是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰度分布均匀程度和纹理粗细度。如果共生矩阵的所有值均相等,则ASM值小;相反,如果其中一些 值大而其它值小,则ASM值大。当共生矩阵中元素集中分布时,此时ASM值大。ASM值大表明一种较均一和规则变化的纹理模式。
(2)对比度: ,其中 。反映了图像的清晰度和纹理沟纹深浅的程度。纹理沟纹越深,其对比度越大,视觉效果越清晰;反之,对比度小,则沟纹浅,效果模糊。灰度差即对比度大的象素对越多,这个值越大。灰度公生矩阵中远离对角线的元素值越大,CON越大。
(3)相关:它度量空间灰度共生矩阵元素在行或列方向上的相似程度,因此,相关值大小反映了图像中局部灰度相关性。当矩阵元素值均匀相等时,相关值就大;相反,如果矩阵像元值相差很大则相关值小。如果图像中有水平方向纹理,则水平方向矩阵的COR大于其余矩阵的COR值。
(4)熵: 是图像所具有的信息量的度量,纹理信息也属于图像的信息,是一个随机性的度量,当共生矩阵中所有元素有最大的随机性、空间共生矩阵中所有值几乎相等时,共生矩阵中元素分散分布时,熵较大。它表示了图像中纹理的非均匀程度或复杂程度。
(5)逆差距: 反映图像纹理的同质性,度量图像纹理局部变化的多少。其值大则说明图像纹理的不同区域间缺少变化,局部非常均匀。
其它参数:
中值<Mean>
协方差<Variance>
同质性/逆差距<Homogeneity>
反差<Contrast>
差异性<Dissimilarity>
熵<Entropy>
二阶距<Angular Second Moment>
自相关<Correlation>
当图像的局部有较小的方差时,则灰度值占有支配地位,当图像的局部有较大的方差时,则纹理占有支配地位。纹理是和局部灰度及其空间组织相联系的,纹理在识别感兴趣的目标和地区中有着非常重要的作用。
灰度共生矩阵表示了灰度的空间依赖性,它表示了在一种纹理模式下的像素灰度的空间关系。它的 弱点是没有完全抓住局部灰度的图形特点,因此对于较大的局部,此方法的效果不太理想。灰度共生矩阵为方阵,维数等于图像的灰度级。灰度共生矩阵中的元素 (i,j)的值表示了在图像中其中一个像素的灰度值为i,另一个像素的灰度值为j,并且相邻距离为d,方向为A的这样两个像素出现的次数。在实际应用中A 一般选择为0°、45°、90°、135°。一般来说灰度图像的灰度级为256,在计算由灰度共生矩阵推导出的纹理特征时,要求图像的灰度级远小于 256,主要是因为矩阵维数较大而窗口的尺寸较小则灰度共生矩阵不能很好表示纹理,如要能够很好表示纹理则要求窗口尺寸较大,这样使计算量大大增加,而且 当窗口尺寸较大时对于每类的边界区域误识率较大。所以在计算灰度共生矩阵之前需要对图像进行直方图规定化,以减小图像的灰度级,一般规定化后的图像的灰度 级为8或16。由灰度共生矩阵能够导出许多纹理特征,本文计算了14种灰度共生矩阵特征,分别为纹理二阶距、纹理熵、纹理对比度、纹理均匀性、纹理相关、 逆差分矩、最大概率、纹理方差、共生和均值、共生和方差、共生和熵、共生差均值、共生差方差、共生差熵。
由灰度共生矩阵能够导出许多纹理特征,计算了14种灰度共生矩阵特征,分别为纹理二阶距、纹理熵、纹理对比度、纹理均匀性、纹理相关、逆差分矩、最大概率、纹理方差、共生和均值、共生和方差、共生和熵、共生差均值、共生差方差、共生差熵。
目前,人们对遥感影像上的纹理特征的含义理解不尽相同,纹理有时被称为结构、影纹和纹形等。 Pickett认为纹理为保持一定的特征重复性并且间隔规律可以任意安排的空间结构。HawKins认为纹理具有三大标志:某种局部序列性不断重 复、非随机排列和纹理区域内大致为均匀的统一体。LiWang和D. C. He认为,纹理是纹理基元组成的,纹理基元被认为是表现纹理特征的最小单元,是一个像元在
其周围8个方向上的特征反应。纹理特征有时是明显的,以某种基本图形在某一地区有规律的周期 性出现,例如:大面积森林覆盖地区的影像构成的纹理为斑点状,沙漠地区的影像构成的纹理为链状、新月状等;而有时纹理特征是不明显的、隐晦的,具有不稳定 性。一般来说,前者纹理比较均一,后者纹理比较复杂。
纹理作为一种区域特征,是对于图像各像元之间空间分布的一种描述。由于纹理能充分利用图像信 息,无论从理论上或常识出发它都可以成为描述与识别图像的重要依据,与其他图像特征相比,它能更好地兼顾图像宏观性质与细微结构两个方面,因此纹理成为目 标识别需要提取的重要特征。提取纹理特征的方法很多,如基于局部统计特性的特征、基于随机场模型的特征、基于空间频率的特征、分形特征等,其中,应用最广 泛的是基于灰值共生矩阵的特征。

D. 这个灰度共生矩阵怎么求啊,什么都没告诉

题目要求是左边或者右边两个像素,所以当两个相同像素相邻时应该计数为2

E. 灰度共生矩阵的灰度共生矩阵的特征

直觉上来说,如果图像的是由具有相似灰度值的像素块构成,则灰度共生矩阵的对角元素会有比较大的值;如果图像像素灰度值在局部有变化,那么偏离对角线的元素会有比较大的值。
通常可以用一些标量来表征灰度共生矩阵的特征,令G表示灰度共生矩阵常用的特征有: 也即每个矩阵元素的平方和。
如果灰度共生矩阵中的值集中在某一块(比如对连续灰度值图像,值集中在对角线;对结构化的图像,值集中在偏离对角线的位置),则ASM有较大值,若G中的值分布较均匀(如噪声严重的图像),则ASM有较小的值。
能量是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰度分布均匀程度和纹理粗细度。如果共生矩阵的所有值均相等,则ASM值小;相反,如果其中一些值大而其它值小,则ASM值大。当共生矩阵中元素集中分布时,此时ASM值大。ASM值大表明一种较均一和规则变化的纹理模式。 如果灰度共生矩阵对角元素有较大值,IDM就会取较大的值。因此连续灰度的图像会有较大IDM值。
逆差矩: 反映图像纹理的同质性,度量图像纹理局部变化的多少。其值大则说明图像纹理的不同区域间缺少变化,局部非常均匀。 若灰度共生矩阵值分布均匀,也即图像近于随机或噪声很大,熵会有较大值。
熵是图像所具有的信息量的度量,纹理信息也属于图像的信息,是一个随机性的度量,当共生矩阵中所有元素有最大的随机性、空间共生矩阵中所有值几乎相等时,共生矩阵中元素分散分布时,熵较大。它表示了图像中纹理的非均匀程度或复杂程度。 其中
自相关反应了图像纹理的一致性。如果图像中有水平方向纹理,则水平方向矩阵的COR大于其余矩阵的COR值。它度量空间灰度共生矩阵元素在行或列方向上的相似程度,因此,相关值大小反映了图像中局部灰度相关性。当矩阵元素值均匀相等时,相关值就大;相反,如果矩阵像元值相差很大则相关值小。
最后,可以用一个向量将以上特征综合在一起。例如,当距离差分值(a,b)取四种值的时候,可以综合得到向量:
h=[ASM1, CON1, IDM1, ENT1, COR1, ..., ASM4, CON4, IDM4, ENT4, COR4]
综合后的向量就可以看做是对图像纹理的一种描述,可以进一步用来分类、识别、检索等。

F. 灰度共生矩阵计算的是整幅图的纹理吗

由于纹理是由灰度分布在空间位置上反复出现而形成的,因而在图像空间中相隔某距离的两像素之间会存在一定的灰度关系,即图像中灰度的空间相关特性。灰度共生矩阵就是一种通过研究灰度的空间相关特性来描述纹理的常用方法

G. 灰度共生矩阵的灰度共生矩阵生成

灰度直方图是对图像上单个象素具有某个灰度进行统计的结果,而灰度共生矩阵是对图像上保持某距离的两象素分别具有某灰度的状况进行统计得到的。
取图像(N×N)中任意一点 (x,y)及偏离它的另一点 (x+a,y+b),设该点对的灰度值为 (g1,g2)。令点(x,y) 在整个画面上移动,则会得到各种 (g1,g2)值,设灰度值的级数为 k,则(g1,g2) 的组合共有 k 的平方种。对于整个画面,统计出每一种 (g1,g2)值出现的次数,然后排列成一个方阵,再用(g1,g2) 出现的总次数将它们归一化为出现的概率P(g1,g2) ,这样的方阵称为灰度共生矩阵。距离差分值(a,b) 取不同的数值组合,可以得到不同情况下的联合概率矩阵。(a,b) 取值要根据纹理周期分布的特性来选择,对于较细的纹理,选取(1,0)、(1,1)、(2,0)等小的差分值。
当 a=1,b=0时,像素对是水平的,即0度扫描;当a=0,b=1 时,像素对是垂直的,即90度扫描;当 a=1,b=1时,像素对是右对角线的,即45度扫描;当 a=-1,b=1时,像素对是左对角线,即135度扫描。
这样,两个象素灰度级同时发生的概率,就将 (x,y)的空间坐标转化为“灰度对” (g1,g2)的描述,形成了灰度共生矩阵。
实验中对灰度共生矩阵进行了如下的归一化:
(1)

H. python中有没有求灰度共生矩阵的函数

matlab提供了现成的函数
graycomatrix生成共生矩阵
graycoprops计算其特征值
具体用法:
glcm = graycomatrix(I)通过计算具有灰度级i和灰度级j的像素对在水平方向相邻出现的频繁程度。glcm中的每个元素说明了水平方向相邻像素对出现的次数。

I. 灰度共生矩阵的介绍

灰度共生矩阵是一种通过研究灰度的空间相关特性来描述纹理的常用方法。

阅读全文

与灰度共生矩阵计算方法相关的资料

热点内容
东莞治疗痤疮的方法 浏览:229
芥菜种植时间和方法 浏览:972
世界上最简单的炒股方法 浏览:317
男士戴项链的正确方法图片 浏览:39
鸡蛋的正确方法 浏览:176
大疆无人机鉴别方法 浏览:631
化学反应中常用方法 浏览:578
失眠做梦怎么治疗方法 浏览:180
液相色谱分析方法通则 浏览:795
干洗衣服的方法和工具技巧 浏览:472
食用菌糖制品制作方法 浏览:330
如何克服怒气的方法 浏览:946
pro胸肌训练方法大全集 浏览:350
笔记本电脑开机键失灵的解决方法 浏览:660
如何做爆米花儿童简单方法 浏览:329
婴儿两个月不喝奶瓶的解决方法 浏览:155
我的世界模组视频制作方法 浏览:768
热冷交换方法有哪些 浏览:898
牛油果柑的种植方法 浏览:950
肝多发性治疗方法 浏览:530