㈠ 磁性传感器的工作原理
磁性传感器的工作原理是磁性探头工作时在周围形成一个静磁场,当铁磁金属制成的物体,如步枪、车辆等进入这个静磁场时,就会感应产生一个新的磁场,由于目标的运动变化所产生的干扰使磁场发生变化,引起磁力计指针的偏转及摆动,产生一个电信号,进而实现对携带武器的人和车辆的探测。
与其他传感器相比,磁性传感器还有一个突出特点,就是它能适应各种条件下的战场探测,特别适用于震动传感器难以探测的沼泽、滩头、水网等地区,从而弥补了震动传感器的不足。
但是磁性传感器的能源有限,这使得它的探测距离较近,一般对人员的探测距离为3~4m,对轮式车辆的探测距离为15m以内,对履带式车辆的探测距离为25m以内。
(1)磁动感应器的原理及安装方法扩展阅读
以程序控制、环境控制、医疗诊断为首的自动化工程目前已开始进入家庭的日常生活,获得信息并及时处理信息的重要性正在增大。
特别是最近,信息处理的主要场所已进入家庭的客厅和厨房。所有这些场合,情报信息的检测是先决条件,因此,传感器变得很重要。
使用传感器的各种场合很多,传感器的类型种类也很多。大体上可以分为电磁性和非电磁性两大类。电磁性的信息容易进行传递、记录、放大和计算等,也便于输入计算机。
可是,非电磁性的信号处理就很困难,必须把它们变换为磁性信号,作为这种变换方式磁性传感器是最有效的。
若在感应电动势中测量电路中接一积分电路,那么输出电动势就与位移量成正比关系;如果在测量电路中接一微分电路,则输出电动势就与运动的加速度成正比关系。
这样磁电式传感器除可测量速度外,还可用来测量运动的位移和加速度。磁电式传感器的输出量,除了电动势的幅值大小外,也可以是输出电动势的频率值,如磁电式转速表即为一个例子。
㈡ 磁性感应开关的工作原理
磁性开关工作原理
磁性开关是接近传感器,它(甚至透过非黑色金属)响应于一个永久的磁场。作用距离大于电感传感器。响应曲线与永久磁场的方向有关。
当一个目标(永久磁铁或外部磁场)接近时,线圈铁芯的导磁性(线圈的电感量l是由它决定的)变小,线圈的电感量也减小,q值增加。激励振荡器振荡,并使振荡电流增加。
当一个磁性目标靠近时,磁式传感器的电流消耗随之增加。
㈢ 磁力线变化的感应器,原理是什么
电感式传感器 inctance type transcer 电感式传感器是利用电磁感应把被测的物理量如位移,压力,流量,振动等转换成线圈的自感系数和互感系数的变化,再由电路转换为电压或电流的变化量输出,实现非电量到电量的转换。 电感式传感器具有以下特点: (1)结构简单,传感器无活动电触点,因此工作可靠寿命长。 (2)灵敏度和分辨力高,能测出0.01微米的位移变化。传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出。 (3)线性度和重复性都比较好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差可达0.05%~0.1%。同时,这种传感器能实现信息的远距离传输、记录、显示和控制,它在工业自动控制系统中广泛被采用。但不足的是,它有频率响应较低,不宜快速动态测控等缺点。 电感式传感器种类很多,常见的有自感式,互感式和涡流式三种。 图中介绍的是自感式传感器。由铁心和线圈构成的将直线或角位移的变化转换为线圈电感量变化的传感器,又称电感式位移传感器。这种传感器的线圈匝数和材料导磁系数都是一定的,其电感量的变化是由于位移输入量导致线圈磁路的几何尺寸变化而引起的。当把线圈接入测量电路并接通激励电源时,就可获得正比于位移输入量的电压或电流输出。电感式传感器的特点是:①无活动触点、可靠度高、寿命长;②分辨率高;③灵敏度高;④线性度高、重复性好;⑤测量范围宽(测量范围大时分辨率低);⑥无输入时有零位输出电压,引起测量误差;⑦对激励电源的频率和幅值稳定性要求较高;⑧不适用于高频动态测量。电感式传感器主要用于位移测量和可以转换成位移变化的机械量(如力、张力、压力、压差、加速度、振动、应变、流量、厚度、液位、比重、转矩等)的测量。常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸力所造成的附加误差。 变间隙型电感传感器 这种传感器的气隙δ随被测量的变化而改变,从而改变磁阻(图1)。它的灵敏度和非线性都随气隙的增大而减小,因此常常要考虑两者兼顾。δ一般取在0.1~0.5毫米之间。 变面积型电感传感器 这种传感器的铁芯和衔铁之间的相对覆盖面积(即磁通截面)随被测量的变化而改变,从而改变磁阻(图2)。它的灵敏度为常数,线性度也很好。 螺管插铁型电感传感器 它由螺管线圈和与被测物体相连的柱型衔铁构成。其工作原理基于线圈磁力线泄漏路径上磁阻的变化。衔铁随被测物体移动时改变了线圈的电感量。这种传感器的量程大,灵敏度低,结构简单,便于制作。磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。 一款电磁传感器的外形 在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。 磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。 现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。 磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。 电磁接近开关 这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。 电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将更加突出。 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械的状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。在所有与机械状态有关的故障征兆中,机械振动测量是最具权威性的,这是因为它同时含有幅值、相位和频率的信息。机械振动测量占有优势的另一个原因是:它能反应出机械所有的损坏,并易于测量。从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 电涡流传感器的典型应用: 电涡流传感器系统广泛应用于电力、石油、化工、冶金等行业和一些科研单位。对汽轮机、水轮机、鼓风机、压缩机、空分机、齿轮箱、大型冷却泵等大型旋转机械轴的径向振动、轴向位移、键相器、轴转速、胀差、偏心、以及转子动力学研究和零件尺寸检验等进行在线测量和保护。
㈣ 说明磁电传感器的基本工作原理,它有哪几种结构形式
磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器。它不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号,是一种有源传感器。
磁电式传感器有时也称作电动式或感应式传感器, 它只适合进行动态测量。由于它有较大的输出功率,故配用电路较简单;零位及性能稳定;工作频带一般为10~1000Hz。
磁电式传感器具有双向转换特性,利用其逆转换效应可构成力(矩)发生器和电磁激振器等。根据这一原理,可以设计成变磁通式和恒磁通式两种结构型式,构成测量线速度或角速度的磁电式传感器。下图所示为分别用于旋转角速度及振动速度测量的变磁通式结构。
变磁通式结构中,永久磁铁与线圈均固定,动铁心的运动使气隙和磁路磁阻变化,引起磁通变化而在线圈中产生感应电势,因此又称变磁阻式结构。
在恒磁通式结构中,工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。这类结构有两种。
为提高灵敏度,应选用具有磁能积较大的永久磁铁和尽量小的气隙长度,以提高气隙磁通密度B;增加la和W也能提高灵敏度,但它们受到体积和重量、内电阻及工作频率等因素的限制。
为了保证传感器输出的线性度,要保证线圈始终在均匀磁场内运动。设计者的任务是选择合理的结构形式、材料和结构尺寸,以满足传感器基本性能要求。
以上就是对磁电式传感器的原理结构的介绍,不同的结构有着不同的工作原理,大家在日常生活中要根据自己的需求选择不同结构的磁电式传感器。
㈤ 磁电式传感器工作原理是什么
1、磁电式速度传感器的工作原理是电磁感应原理,将运动速度转换成线圈的感应电动势输出的传感器。
2、磁电式传感器有时也称作电动式或感应式传感器,
它只适合进行动态测量。由于它有较大的输出功率,故配用电路较简单;零位及性能稳定;
利用其逆转换效应可构成力(矩)发生器和电磁激振器等。根据电磁感应定律,当w匝线圈在均恒磁场内运动时,设穿过线圈的磁通为φ,则线圈内的感应电势e与磁通变化率dφ/dt有如下关系:
根据这一原理,可以设计成变磁通式和恒磁通式两种结构型式,构成测量线速度或角速度的磁电式传感器。下图所示为分别用于旋转角速度及振动速度测量的变磁通式结构。
变磁通式结构
(a)旋转型(变磁));
(b)平移型(变气隙)
其中永久磁铁1(俗称"磁钢")与线圈4均固定,动铁心3(衔铁)的运动使气隙5和磁路磁阻变化,引起磁通变化而在线圈中产生感应电势,因此又称变磁阻式结构。变磁式结构
在恒磁通式结构中,工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动--线圈切割磁力线而产生。这类结构有两种,如下图所示。
恒磁通式结构
(a)动圈式;(b)动铁式
图中的磁路系统由圆柱形永久磁铁和极掌、圆筒形磁轭及空气隙组成。气隙中的磁场均匀分布,测量线圈绕在筒形骨架上,经膜片弹簧悬挂于气隙磁场中。
当线圈与磁铁间有相对运动时,线圈中产生的感应电势e为
式中
b--气隙磁通密度(t);
l--气隙磁场中有效匝数为w的线圈总长度(m)为l=law(la为每匝线圈的平均长度)
v--线圈与磁铁沿轴线方向的相对运动速度(ms-1)。
当传感器的结构确定后,式(5-2)中b、la、w都为常数,感应电势e仅与相对速度v有关。传感器的灵敏度为
为提高灵敏度,应选用具有磁能积较大的永久磁铁和尽量小的气隙长度,以提高气隙磁通密度b;增加la和w也能提高灵敏度,但它们受到体积和重量、内电阻及工作频率等因素的限制。
为了保证传感器输出的线性度,要保证线圈始终在均匀磁场内运动。设计者的任务是选择合理的结构形式、材料和结构尺寸,以满足传感器基本性能要求。
㈥ 简述电磁感应式曲轴位置传感器的工作原理
曲轴位置传感器工作原理:
主要有三种类型:磁电感应式、霍尔效应式和光电式。三种类型的工作原理分别为:
1、磁电感应式:
磁电感应式转速传感器和曲轴位置传感器分上、下两层安装在分电器内。传感器由永磁感应检测线圈和转子(正时转子和转速转子)组成,转子随分电器轴一起旋转。正时转子有一、二或四个齿等多种形式,转速转子为 24个齿。永磁感应检测线圈固定在分电器体上。若已知转速传感器信号和曲轴位置传感器信号,以及各缸的工作顺序,就可知道各缸的曲轴位置。磁电感应式转速传感器和曲轴位置传感器的转子信号盘也可安装在曲轴或凸轮轴上。
2、 霍尔效应式:
霍尔效应式转速传感器和曲轴位置传感器是一种利用霍尔效应的信号发生器。霍尔信号发生器安装在分电器内,与分火头同轴,由封装的霍尔芯片和永久磁铁作成整体固定在分电器盘上。触发叶轮上的缺口数和发动机气缸数相同。当触发叶轮上的叶片进入永久磁铁与霍尔元件之间,霍尔触发器的磁场被叶片旁路,这时不产生霍尔电压,传感器无输出信号;当触发叶轮上的缺口部分进入永久磁铁和霍尔元件之间时,磁力线进入霍尔元件,霍尔电压升高,传感器输出电压信号。
3、光电式:
光电式曲轴位置传感器一般装在分电器内,由信号发生器和带光孔的信号盘组成。其信号盘与分电器轴光电式一起转动,信号盘外圈有 360条光刻缝隙,产生曲轴转角 1 °的信号;稍靠内有间隔 60 °均布的 6 个光孔,产生曲轴转角 120 °的信号,其中 1 个光孔较宽,用以产生相对于 1 缸上止点的信号。信号发生器安装在分电器壳体上,由二只发光二极管、二只光敏二极管和电路组成。发光二极管正对着光敏二极管。信号盘位于发光二极管和光敏二极管之间,由于信号盘上有光孔,则产生透光和遮光交替变化现象。当发光二极管的光束照到光敏二极管时,光敏二极管产生电压;当发光二极管光束被档住时,光敏二极管电压为0 。这些电压信号经电路部分整形放大后,即向电子控制单元输送曲轴转角为 1 °和 120°时的信号,电子控制单元根据这些信号计算发动机转速和曲轴位置。
曲轴位置传感器通常安装在分电器内,是控制系统中最重要的传感器之一。其作用有:检测发动机转速,因此又称为转速传感器;检测活塞上止点位置,故也称为上止点传感器,包括检测用于控制点火的各缸上止点信号、用于控制顺序喷油的第一缸上止点信号。
㈦ 磁感应接近开关是什么它的原理是什么
我们知道磁感应开关在现在的生活当中也是使用的比较广泛的,因为我们知道磁感应开关它在使用的过程中也比较方便,所以很多的地方很多的家庭会选择磁感应接近开关,但是我们知道磁感应开关是什么呢?有关于磁感应开关的原理有哪些,我们可能对于这方面的问题还不是太了解,那么下面我们来为大家介绍这方面的问题,我们一起来看。
磁感应开关是什么
1、电磁感应开关:运用基本的电磁感应原理用于工业,住房等的电路控制。电磁感应开关是一种无触点开关,也可用于提升机、电梯等控制系统,以保证运行安全、停位准确.它实际上是一个单稳态触发器,无感应脉冲信号时电路处于稳态。
2、电磁感应开关:其基本构成为一其上浮贴有上、下导电膜的基板、多个电磁感应按键开关及电路控制单元等,使基板配合特殊电磁感应按键开关的结构及电路控制单元,其由模拟多路、信号放大装置、信号触发装置、信号锁定/清除装置、中央处理单元、工作中断点控制装置等组成,以取得按键字符位置,并利用载入中央处理单元的程序,使其实现快速、无漏字、无错字、具有线性化及无声响的功能。
磁感应开关原理
1、电流分交流和直流两种,一般用于远距离、频繁起动的电力设备接通与分断之用,利用按钮开关通过电磁开关安全快捷地控制所用的电力设备。
2、它的工作原理,经按钮开关给电磁开关的电磁线圈一个小电流,电磁铁产生磁场使电磁开关吸合,这样电源的电流就通过电磁开关的触点输送大功率电力设备。
3、在实际应用中,是用多个电磁开关组成控制柜,再通过按钮开关来控制电力设备各种不同的工作。
4、触摸感应开关原理是温度——人的体温通常都高于外界环境的温度。因此许多电梯使用了可以感应人体手指热量的按钮。当然,如果您的手很凉,那么对这些按钮是不起作用的。磁性开关意思就是通过磁铁来感应的,这个“磁”就是磁铁,磁铁也有好几种,市场上面常用的磁铁有橡胶磁、永磁铁氧体、烧结钕铁硼等。开关就是干簧管了。干簧管是干式舌簧管的简称,是一种有触点的无源电子开关元件,具有结构简单,体积小便于控制等优点,其外壳一般是一根密封的玻璃管,管中装有两个铁质的弹性簧片电板,还灌有惰性气体。
5、平时,玻璃管中的两个由特殊材料制成的簧片是分开的。当有磁性物质靠近玻璃管时,在磁场磁力线的作用下,管内的两个簧片被磁化而互相吸引接触,簧片就会吸合在一起,使结点所接的电路连通。外磁力消失后,两个簧片由于本身的弹性而分开,线路也就断开了。因此,作为一种利用磁场信号来控制的线路开关器件,干簧管可以作为传感器用,用于计数,限位等等(在安防系统中主要用于门磁、窗磁的制作),同时还被广泛使用于各种通信设备中。在实际运用中,通常用永久磁铁控制这两根金属片的接通与否,所以又被称为“磁控管”。
以上我们为大家介绍的是关于磁感应开关的原理有哪些?以及磁感应开关好不好的相关问题,对于这方面的问题我们应该有一些了解吧,我们知道磁感应开关是比较先进的一种开关,而且在应用的过程当中使用效果也是比较好的,所以很多的家庭很多的地方也都会进行选购,我们如果需要的话,也不妨来试试这种磁感应开关。