‘壹’ 输油管道有哪几种类型
输油管道有原油管道和成品油管道两种。输送的油品不同,输送工艺也不尽相同。原油一般比重比较大,黏稠并易于凝固;而成品油又分汽油、煤油、柴油和燃料油以及液化石油气等。对于轻质成品油和凝固点、黏度比较低的原油一般采取等温输送方法,即将炼油厂出来的油或油田开采出的油直接输入管道运输,不进行加温。而对容易凝固的高黏度油品要采用加温稀释等方法输送。对于成品油的多种油品则采取顺序输送的工艺输送。
输油管道
‘贰’ 管道无损检测共有几种方法
大部分的无损检测方法都可以用于管道,如:射线,超声,磁粉,渗透,涡流,导波,TOFD,相控阵等
其中射线和超声波可以应用于管道壁厚测量,磁粉渗透涡流可用于焊缝表面缺陷检测,TOFD和相控阵可用于焊缝内部缺陷检测,导波和相控阵还可用于管道腐蚀检测
‘叁’ 市政管道常用的检测方法有哪些
排水管道状态评估是在前期人工、CCTV及声纳等检测结果的基础上,对管道的功能性与结构性状态进行判断评估,确定管道畅通程度与构造的完好程度,以便为后续管道修复及养护提供指导性意见,提高修复及养护的工作效率。目前,国际上如英国、美国、日本、丹麦等地分别出台了与其相适应的评估体系,广州迪升在管道修复及养护中发挥了巨大的作用。
排水管道检测主要有以下三种方式:
管道声纳检测
声纳检测主要用于解决管道内部水位较高时,检测管道内的淤泥量,软质管道的变形等缺陷问题。通过牵引绳的牵引使声纳探头在管道内移动测出管道的淤积量,在需要了解管道内部淤积及管道清淤前预计量的统计上具有显着效果。
分析介绍了目前常用的几种排水管道检测方法,论述了我国排水管道检测技术的现状,最后对国外的排水管道检测技术进行了探讨,以期为同行提供一些有用的信息和让客户更好的了解这些检测技术。
‘肆’ 管道泄漏检测用什么方法
输油/输天然气的管道,其泄漏检测方法目前集中在光纤检测法、负压波检测法和次声波检测法这三种方法上。
光纤检测法的原理是管道发生泄漏时,管道周边会有温度下降的情况出现,光纤对温度变化十分敏感,能够检测出来。该方法对光纤的质量要求非常高,并且光纤埋设要贴近管道,目前尚无成功报道。
负压波法的原理是管道发生泄漏时,管道内的压力会降低,产生负压,压力传感器能够采集到负压波信号。负压波法成本低,是目前应用最为广泛的技术,但负压波应用面窄,海底管道、天然气管道都不能使用,即使是输油管道,停输检修期间无效,有拱跨的管道效果也比较差,定位精度较低。
次声波法的原理是管道发生泄漏时,泄漏能量在泄漏处引起管道振动,振动产生的次声波信号能被次声波传感器采集到。次声波法适应面广,定位精确,但是成本一直居高不下,阻碍了该技术的推广。
‘伍’ 求一篇《原油管道泄漏检测技术的文献综述》
本文由tonyxiong77992贡献
pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
iltt信■
o科教前沿o
2008年第35搠
输油管道泄漏检测及定位技术综述
朱志千王兮璐 I西安科技大学陕西西安710054)
【摘要】输油管道的泄露,不仅会造成巨大的经济损失,还会带来极大的危险,而且套造成对环境的严重污染。对此,本文系统介绍了近年 来国内,F,II油管线泄满检测及定位技术,并对比了各种方法的优缺点。 【关键词】输油管绒;泄露;检测;定位
0.引‘言 管道运输具有平稳连续,安全性好,运输量大,质量易保证,物料 损失小以及占地少,运赞低等特点,已经成为石油运输的首选方式。然 而.由于管道服役时间不断增长而逐渐老化,或受到各种介质的腐蚀 以及人为破坏等因素,会引起管道泄漏,严重威胁着输油管线的安全, 及周围的自然环境,同时带来不可估量的经济损失。 目前,国内外出现多种输油管线泄漏检测及定位方法,其中包括 基于硬件的检测方法,如人工巡线、“管道猪”、声发射技术等;基于软 件的检测方法,如负压波法、压力梯度法等。
时性较强,对泄漏点的定位较为精确。但是,声发射信号在输油管道上 传播的距离极为有限,不利于长距离检测。闭 基于硬件检测的方法还有很多。比如管内智能爬机系统(即“管道 猪”)、光线检测、电缆检测及GPS检测等。
3.软件检测方法
基于软件的检测方法是指根据计算机数据采集系统(如SCADA 系统)实时采集管道的流量、压力.温度及其他数据,利用流量或压力的 变化、物料或动量平衡、系统动态模型、压力梯度等原理,通过计算对 泄漏进行检测和定位。 3.1负压波检测法 当管道发生突然泄漏时,由泄漏部位会产生一个向管道上游或管 道下游传播的减压波,称之为负压波。在管道两端设置压力传感器,当 传感器检测到负压波。就可以削断泄漏并对泄漏进行定位。应用负压 渡检测法的关键问题是如何区分正常操作与泄漏带来的负压波。负压 波检测法灵敏准确。可以迅速地检测出大的泄漏,但是对于比较小的 泄漏或已经发生的泄漏效果则/fi明显。‘31 3.2压力梯度法 当输油管道内原油流动平稳时.压力沿管道是线性变化的,也就 是说.压力呈斜直线分布。在管道的上、下游分别设置两个压力传感 器.通过上、下游的压力信号可分别讣算出管道的压力梯度。当管道发 生泄漏时,泄漏点前的流量变大,压力梯度变陡;泄漏点后的流量变 小,压力梯度变平,其折点就是泄漏点。由此可以计算出泄漏点的位 置。在实际运行中,由于沿管道压力梯度是非线性分布,因此压力梯度 法的定位精度较差,并且仪表测量的精度和安装位置都对定位结果有 较大的影响。 3.3小波分析法 小波分析是20世纪80年代中期发展起来新的数学理论和方法, 是一种良好的时频分析工具。利用小波分析可以检测信号的突变、去 嗓、提取系统波形特征、提取故障特征进行故障分类和识别等。因此, 可以利用小波变换检测泄漏引发的压力突降点并对其进行消噪,以此 检测泄漏并提高检测的精度。小波变换法的优点是不需要管线的数学 模型。对输入信号的要求较低,计算量也不大,可以进行在线实时泄漏 检测。克服噪声能力强,但是,此方法对由工况变化及泄漏引起的压力 突降难以识别.易产生误报。 3.4瞬变模型法 瞬变模型法是建立管道内流体流动的数学模型,在一定边界条件 下求解管道内流场。然后将计算值与管道端的实测值相比较。当实测 值与计算值的偏差大于一定范围时,即认为发生了泄漏。在泄漏定位 中使用稳态模型。根据管道内的压力梯度变化可以确定泄漏点的位 置。瞬变模型法的报警门限值与测量仪器误差、流动模型误差、数值方 法误差以及要求的报警时间均密切关。如果采用较小门限值来检测更 小的泄漏。那么由于以上原因导致的不确定性就会产生更多的误报; 如果要求低的误报率,那么所能检测到的最小的泄掘必然变大。误报 率高是瞬变模型法在实际应用中的一个很大缺陷。 基于软件的检测方法还包括压力点分析法、流量平衡法、统计检 测法等。
1.输油管道泄露检测及定位的性能评价
管道泄露检测及定位技术能够及时准确报告泄漏事故,可以最大 限度地减少经济损失和环境污染及更大危险的发生。对一种泄露检测 方法的优劣和性能的评价,应从以下几个标准考虑: (1)泄漏检测的灵敏度:指泄漏检测系统对小的泄漏信号的检测 能力。 (2)泄漏检测的及时性:指检测系统在尽可能短的时间内检测到 泄漏发生的髓力。 (3)泄露的误报率:误报率是指系统没有发生泄漏时却被错误地 判定出现泄露的概率。 (4)泄露的漏摄率:漏报率是指系统出现了泄漏却没有被检测出 来的概率。 (5)正常工况和泄强的分离能力:是指对正常的起I停泵、调阀、倒 罐等情况和管道泄漏情况的区分能力。这种区分能力越强,误报率越 低。 : (6)泄露辨别的准确性:指泄漏榆测系统对泄漏的大小及其时变 特性的估计准确度。对于泄漏时变性的准确估计。不仅可以识别泄漏 的程度。而且可对老化、腐蚀的管道进行预测并给出一个合理的处理 方法。 (7)鲁棒性:指泄漏诊断系统在存有噪声、干扰、建模误差等情况 下正确完成泄漏诊断的任务,同时保证满意的误报率和漏报率的能 力。诊断系统鲁棒性越强,可靠性就越高。 (8)自适应能力:指诊断系统对于变化的诊断对象具有自适应能 力,并且能够充分利用由于变化产生的新的信息来改善自身。
2.硬件检测方法
基于硬件的方法是指利用由备种不同的物理原理设计的硬件装 置,如基于视觉的红外线温度传感器,基于听觉的超声波传感器,基于 嗅觉的碳氧检测装置等,将其携带或铺设在管线上,以此来检测管道的 泄漏并定位。flJ 2.1人工巡线 人工巡线就是由经验丰富的管道工人沿输油管道进行巡查.或由 直升飞机或其它飞行器搭载高精度检测设备,通过对管道周围环境变 化的监溯和分析判断管道是否发生泄露。显而易见,这种方法检测的 连续性和实时性都非常差,而且成本较高。 2.2声发射技术 当管道发生泄漏时,流体通过裂纹或者腐蚀孔向外喷射形成声源。 然后通过和管道相互作用,声源向外辐射能量形成声波,这就是管道泄 漏声发射现象。泄漏声发射信号由液体泄漏激励产生。属于连续声发 射信号,在管道内传播,能反映结构的某些特征。如鬻孔位置和大小 等,同时又有很大的随机性和不确定性,属于一种非平稳琏机信号。利
4.结论
通过上述的论述和比较。结合衡量管道泄瀑检测方法的优、劣的 几个主要标准分析,许多检测方法都存在尚需解决得闯题,如小渣露 检测与定位同题。多泄漏点管同的检测与定位问题等等。而单纯地采 用任何一种技术对输油管线进行泄露检测和定位都无f下转纂廖6霹J
用检测仪器对声发射信号进行捕捉和分析。就可以对管道上是否发生
泄酝澄露的为止进行刿断。声发射技术的优赢在于:其动态性和实
万方数据
oIT技术论坛o
2008年第35明
基于任务分担模型下高校机房管理系统的研究分析
殷诚张律 (九江职业大学江西九江332000 J
【擒要】学校的计算机房不但要满足学校教学管理的需要,还要满足学生课余时阄上网查询资料及其它应用的需要。传统的机房管理系 统采用C/S模型在实际应用中有许多局限性,经过改进后的机房管理系统在结构上将传统的CIS中的s改为S和S,即将原模型大S中的功能 分配到相应的主服务器s和分服务器s,实现任务分担,这样既解决了原C/S中服务器负荷过重的现象。又解决了网络随终端数量的增加出现过
、 度繁忙的现象。 【关键词】C/S模型;任务分担;C/s/S模型;远程换醒
一、高校机房管理系统改进的必要性
学校的计算机房不但要满足学校教学管理的需要,还要满足学生 课余时间上网查询资料及其它应用的需要。作为一套机房管理软件, 它必须具备以下功能:课前,教师可以上课预约,在正常的上课时间, 教师可以利用管理软件检查设备状况、对学生进行考勤,学生使用计 算机不能计费;在课余时间,学校可对学生收取一定的服务费。但在实 际的应用过程中,许多学校目前采用刷卡的方式,这种刷卡方式,在学 生上机的时候,需要人员进行监督,下机的时候,仍需要人员进行监 督。如果使用硬件解决方案,会增加设备成本与维护成本。同时随着学 校规模的口益扩大,在校学生人数的日益增多,机房的计算机数量也 越来越多,上机的人数也越来越多,且许多学校存在多校区现象,这样 就出现设备分散分布的现状。如果用这种刷卡的方式。必然会使得工 作人员的工作量加大。为了保证设备管理的高效性、集中管理的统一 性、课余时间上机的灵活性,同时又能减轻工作人员的工作负担,所以 从应用上来讲必然需要有一套有效的软件来进行管理控制。 从技术上来讲,现在很多的机房管理软件都是采用C,s即客户,服 务器模式,在这种模式下,当客户数量过多、数据量大量增多时,就会 出现服务器负荷过重,严重的会出现服务器崩溃现象,同时网络数据 流量也会明显加大,加重了网络的负担,为了避免这种情况的出现,从 技术上有改进的必要,从而为任务分担模型的提出提供了技术需求。 勤。
(2)主服务器S功能 主服务器S主要实现数据的分发及各分服务数据的接收、对各分 服务器的管理、教师上课预约等,其基本功能如右图.: (3)分服务器s功能 分服务器主要实现对主服务器数据的收发、对客户端的控制管 理、收费的实现等。主要功能如右图: 任务分担模型下高校机房管理系统的功能如下:
基于任务分担模型下高校机房管理系统功能有: (1)能实现跨网络的数据传输与控制,实现机房管理的统一性。 (2)教师能利用本软件预约上机、检查机房设备状况、对学生考 (3)计费管理自动进行,实现计费无人值守。 (4)采用服务器唤醒技术,服务器程序不启动。客户程序界面不出 现,开放机房上机计费和正常教学、工作使用互不影响。。机多用,符 合学校对外开放机房收费的需要。 (5)服务器程序和收费充值程序分离,便于控制和管理,上机时无 现金交易,增加收费和费用管理的透明度。 (6)客户端自动上机计时显示,便于用户了解和掌握上机时间。 (7)帐户余额自动检测。防透支,余额不足,提前提醒并倒计时。 (8)支持多管理员,功能分工,相互制约。
二、任务分担模型的实现
传统的C/S模型在实际应用中有许多局限性,经过改进后的机房 管理系统在结构上将传统的C,s中的S改为s和S,即将原模型S中 的功能分配到相应的主服务器S和分服务器s,实现任务分担,这样解 决了原c,S中服务器负荷过重的现象,也解决了网络随终端数量的增 加出现过度繁忙的现象,其结构及功能分工如下。 (1)拓扑结构设计: 拓扑结构如右图所示,这种结构改变了C/S模式,将S改为分服 务器8和主服务器S即c^s,s,各客户端的数据大部分可以在本地服务 器s处理,这样对主服务器S进行任务分担.同时网络中数据流量也 会因此大大减少,减轻了网络的负担,实现任务分担。其中主服务器为 S。分服务器为s。
机房管骥统一性,提高机房的管理效率,对学校的管理有极为积极
的意义。嘭
【参考文献】
[1】王敬斌.公共机房收费管理系统软件的开发明.电脑开发与应用.2002,(3).
基于任务分担模型下高校机房管理系统的实现必将有利于高校
(2】睢丹.基于Agent分布式机房管理系统的设计与实现【D1.华东师范大学..2007,
5.
[3]殷诚:九江职业大学.
I蕾曩量务
口客户赡
【责任缩辑:田瑞叠】
(上接摹睨页J法达到令人满意的效果。只有综合地运用多种技术。才
[3J康小亲等.基于负压披法的糖袖管道澄攮检谢定位系统.计算饥工程与设计
20昕,.5:2199-2202.
能成功地实现对输油管道泄漏的检测及定位。●叁
‘陆’ 管道表面如何测量温度
用点温度计,测头是热电偶,耐用。LCD显示,售价不满百元。
‘柒’ 联合站输油管道常用检测方法有哪些
1 漏磁检测。 漏磁检测的工作原理是通过检测器携带的强磁 铁, 在管壁整个周向产生一个轴向的磁场。如果管壁 完好, 那磁场分布均匀, 当管壁有损伤、 缺陷的时候, 磁场就会发生变化 , 甚至泄漏 。漏磁检测就是通过磁 力传感器检测被磁化管壁中的漏磁场来判断管壁缺 陷的方法 。
2 超声检测。 超声检测 的工作原理是利用超声波在介 质中的 均匀传播 ,探头发射 的超声波在 管壁 内外表 面的反 射后被探头接收, 通过超声波传播的速度和时间差, 计算出管壁的厚度; 通过不同反射角度的超声波 , 计 算出缺陷的形状、 大小等参数。
3 涡流检测。 涡流检测 的工作原理是 是运用 电磁感应 原理 , 用正弦波电流激励探头线 圈 ,当探头接近金属表面 时 , 线圈周 围的交变磁场在金属表 面产生感应 电流。 对 于平板金属 ,感应 电流的流 向是与线 圈同心 的圆 形 , 形似旋涡, 称为涡流 。遇到缺陷或材质 、 尺寸等变 化 , 使得 涡流磁场对线 圈的反作用不 同 , 引起线 圈阻。
‘捌’ 原油管线输油温度
末端进站要比凝点高3~5℃,具体根据热力计算决定
‘玖’ 温度的测量方法有几种
1、接触式测温法
接触式测温法的特点是测温元件直接与被测对象接触,两者之间进行充分的热交换,最后达到热平衡,这时感温元件的某一物理参数的量值就代表了被测对象的温度值。
这种方法优点是直观可靠,缺点是感温元件影响被测温度场的分布,接触不良等都会带来测量误差,另外温度太高和腐蚀性介质对感温元件的性能和寿命会产生不利影响。
2、非接触式测温法
非接触式测温法的特点是感温元件不与被测对象相接触,而是通过辐射进行热交换,故可以避免接触式测温法的缺点,具有较高的测温上限。此外,非接触式测温法热惯性小,可达1/1000S,故便于测量运动物体的温度和快速变化的温度。
由于受物体的发射率、被测对象到仪表之间的距离以及烟尘、水汽等其他的介质的影响,这种方法一般测温误差较大。
(9)输油管道温度测量方法有哪几种扩展阅读:
为了定量地进行温度的测量,首先必须确定温度的数值表示方法,然后以此为根据对温度计进行刻度。温度的数值表示法叫做温标。所谓数值表示法包括两个方面:一是确定温度数值大小的依据;二是标度方法。具体说来又包含以下三个要素:
第一,选定测温物质及其测温属性,此属性用数值表示即某种物质的测温参量X(如铂的电阻;热电偶的温差电动势等。)
第二,确定测温参量与温度之间的关系(在尚未确立任何温标之前,这种关系只是在一定经验的基础上作出的假定关系)。
例如确定为线性关系
t=aX+b式中的a、b需要由所取的两个标准温度点的数值确定;又如确定温度与测温参量间为正比关系
T=aX式中的a只由一个标准温度点即可确定。
第三,确定标准温度点并规定其数值,此即标度方法。
‘拾’ 油气管道变形检测的技术方法有哪些
一、管道检测技术的发展方向
长输油气管道运行过程中通常受到来自内、外两个环境的腐蚀,内腐蚀主要由输送介质、管内积液、污物以及管道内应力等联合作用形成;外腐蚀通常因涂层破坏、失效产生。内腐蚀一般采
用情管、加缓蚀剂等手段来处理,近年来随着管道业主对管道运行管理的加强以及对输送介质的严格要求,内腐蚀在很大程度上得到了控制。目前国内外长输油气管道腐蚀控制主要发展方向是在外防腐方面,因而管道检测也重点针对因外腐蚀造成的涂层缺陷及管道缺陷。
近年来,随着计算机技术的广泛普及和应用,国内外检测技术都得到了迅猛发展,管道检测技术逐渐形成管道内、外检测技术(涂层检测、智能检测)两个分枝。通常情况下涂层破损、失效处下方的管道同样受到腐蚀,管道外检测技术的目的是检测涂层及阴极保护有效性的基础上,通过挖坑检测,达到检测管体腐蚀缺陷的目的,对于目前大多数布局北内检测条件的管道是十分有效的。管道内检测技术主要用于发现管道内外腐蚀、局部变形以及焊缝裂纹等缺陷,也可间接判断涂层的完好性。
二、管道外检测技术
埋地管道通常采用涂层与电法保护(CP)共同组成的防护系统联合作用进行外腐蚀控制,这2种方法起着一种互补作用:涂层是阴极保护即经济又有效,而阴极保护又使涂层出现针孔或损伤的地方受到控制。该方法是已被公认的最佳保护办法并已被广泛用于对埋地管道腐蚀的控制。
涂层是保护埋地管道免遭外界腐蚀的第一道防线,其保护效果直接影响着电法保护电流的工作效率,NACE1993年年会第17号论文指出:“正确涂敷的涂层应该为埋地构件提供99 %的保护需求,而余下的1%才由阴极保护提供”。因此要求涂层具有良好的电绝缘性、黏附性、连续性及耐腐蚀性等综合性能,对其完整性的维护是至关重要的。涂层综合性能受许多因素的影响,诸如涂层材料、补口技术、施工质量、腐蚀环境以及管理水平等,并且管道运行一段时间后,涂层综合性能会出现不同程度的下降,表现为老化、龟裂、剥离、破损等状况,管体表面因直接或间接接触空气、土壤而发生腐蚀,如果不能对涂层进行有效的检测、维护,最终将导致管道穿孔、破裂破坏事故。
涂层检测技术是在对管道不开挖的前提下,采用专用设备在地面非接触性地对涂层综合性能进行检测,科学、准确、经济地对涂层老化及破损缺陷定位,对缺陷大小进行分类统计,同时针对缺陷大小、数量进行综合评价并提出整改计划,以指导管道业主对管道涂层状况的掌握,并及实践性维护,保证涂层的完整性及完好性。
国内实施管道外检测技术始于20世纪80年代中期,检测方法主要包括标准管/地电位检测、皮尔逊(Pearson)涂层绝缘电阻测试、管内电流测试等。检测结果对涂层的总体评价到了重要作用,但在缺陷准确定位、合理指导大修方面尚有较大的差距。近年来,通过世界银行贷款以及与国外管道公司交流,管道外检测设备因价格相对较为便宜,操作较为方便,国外管道外间的技术已广泛应用于国内长输油气管道涂层检测,目前国内管道外检测技术基本上达到先进发达国家水平,在实际工作中应用较为广泛的外检测技术主要包括:标准管/地电位检测、皮尔逊检测、密间距电位测试、多频观众电流测试、直流电为梯度测试。
1. 标准管/地点位检测技术(P/S)
该技术主要用于监测阴极保护效果的有效性,采用万用表测试接地CU/CuSO4电极与管道金属表面某一点之间的电位,通过电位距离曲线了解电位分布情况,用以区别当前电位与以往电位的差别,还可通过测得的阴极保护电位是否满足标准衡量涂层状况。该法快速、简单,现仍广泛用于管道管理部门对管道涂层及阴极保护日常管理及监测中。
2. 皮尔逊监测技术(PS)
该技术是用来找出涂层缺陷和缺陷区域的方法,由于不需阴极保护电流,只需要将发射机的交流信号(1000 Hz)加载在管道上,因操作简单、快速曾广泛使用与涂层监测中。但检测结果准确率低,以受外界电流的干扰,不同的土壤和涂层段组都能引起信号的改变,判断是缺陷以及缺陷大小依赖于操作员的经验。
3. 密间距电位测试技术(CIS、CIPS)
密间距电位测试(Close Interval Survey)和密间距极化电位(Close Interval Potential Survey)监测类似于标准管/地电位(P/S)测试法,其本质是管地电位加密测试和加密断电电位测试技术。通过测试阴极保护在管道上的密集电位和密集化电位,确定阴极保护效果的有效性,并可间接找出缺陷位置、大小,反映涂层状况。该方法也有局限性,其准确率较低,其准确率较低,依赖于操作者经验,易受外界干扰,有的读书误差达200~300 mV。
4. PCM多频管中电流测试
多频管中点留法是监测涂层漏电状况的新技术,是以管中电流梯度测试法为基础的改进型涂层检测方法。它选用了目前较为先进的PCM仪器,按已知检测间距测出电流量,测定电流梯度的分布,描绘出整个管道的概貌,可快速、经济地找出电流信号漏失较严重的管段,并通过计算机分析评价涂层的状况,再使用PCM仪器的“A”字架检测地表电位梯度精确定位涂层破点。该方法是与不同规格、材料的管道,可长距离地检测整条管道,受涂层材料、地面环境变化影响较小,适合于复杂地形并可对涂层老化状况评级;可计算出管段涂层面电阻 R g值,对管道涂层划分技术等级,评价管道涂层的状况,提出涂层维护方式。采用专用的耦合线圈,还可对水下管道进行涂层检测。
5. 直流电位梯度(DCVG)方法
该方法通过检测流至埋地管道涂层破损部位的阴极保护电流在土壤介质上产生的电位梯度(即土壤的 IR降)并依据IR降的百分比来计算涂层缺陷的大小,其优点在于不受交流电干扰,通过确定电流是流入还是流出管道,还可判断管道是否正遭受到腐蚀。
6. 几种测试方法的比较
近几年,笔者在四川龙——苍线、工——自线、泸——威线、申——倒线等多条管道涂层及阴极保护有效性检测方面,对上述几种方法进行了比较,发现各种涂层缺陷检测技术都是通过在管道上加载直流或交流信号来实现的,不同的仅是在结构上、性能上、功用上的差异。每种方法各有侧重,在对涂层综合性能评价方面均具有一定说服力,但各有利弊。
为克服单一检测技术的局限性,现场检测中笔者发现综合几种检测方法对涂层缺陷进行检测,可以弥补各项技术的不足。对于由阴极保护的管道,可先参考日常管理记录中(P/S)的测试值,然后利用CIPS技术测量管道的管地电位,所测得的断电电位可确定阴极保护系统效果,在判断涂层可能有缺陷后,利用DCVG技术确定每一缺陷的阴极和阳极特性,最后利用DCVG确定缺陷中心位置,用测得的缺陷泄漏电流流经土壤造成的IR降确定缺陷的大小和严重性,以此作为选择修理的依据。对于未事假阴极保护的管道,可先用PCM测试技术确定电流信号漏失较严重的管段,然后在PCM使用的“A”字架或皮尔逊检测技术精确定位涂层破损点,确定涂层破损大小。PCM测试技术也可用于具有阴极保护的管道,其检测精度略低于DCVG技术。
由于所有涂层检测技术均是在管道上施加电信号,因此各种技术均存在一些不足,对某些涂层缺陷无法查找,如部分露管涂层破损处管体未与大地接触,信号因不能流向大地形成回路,只能通过其他手段查找;因屏蔽作用,不适用于加套管的穿越管线;所有技术均不能判定涂层是否剥离。
三、管道内检测技术
管道内检测技术是将各种无损检测(NDT)设备加在岛清管器(PIG)上,将原来用作清扫的非智能改为有信息采集、处理、存储等功能的智能型管道缺陷检测器(SMART PIG),通过清管器在管道内的运动,达到检测管道缺陷的目的。早在1965年美国Tuboscopc公司就已将漏磁通(MFL)无损检测(NDT)技术成功地应用于油气长输管道的内检测,紧接着其他的无损内检测技术也相继产生,并在尝试中发现其广泛的应用前景。
目前国外较有名的监测公司由美国的Tuboscopc GE PII、英国的British Gas、德国的Pipetronix、加拿大的Corrpro,且其产品已基本上达到了系列化和多样化。内检测器按功能可分为用于检测管道几何变形的测径仪、用于管道泄漏检测仪、用于对因腐蚀产生的体积型缺陷检测的漏磁通检测器、用于裂纹类平面型缺陷检测的涡流检测仪、超声波检测仪以及以弹性剪切波为基础的裂纹检测设备等。下面对应用较为广泛的几种方法进行简要介绍。
1. 测径检测技术
改技术主要用于检测管道因外力引起的几何变形,确定变形具体位置,有的采用机械装置,有的采用磁力感应原理,可检测出凹坑、椭圆度、内径的几何变化以及其他影响管道内有效内径的几何异常现象。
2. 泄漏检测技术
目前较为成熟的技术是压差法和声波辐射方法。前者由一个带测压装置仪器组成,被检测的管道需要注以适当的液体。泄漏处在管道内形成最低压力区,并在此处设置泄漏检测仪器;后者以声波泄漏检测为基础,利用管道泄漏时产生的20~40 kHz范围内的特有声音,通过带适宜频率选择的电子装置对其进行采集,在通过里程轮和标记系统检测并确定泄漏处的位置。
3. 漏磁通过检测技术(MFL)
在所有管道内检测技术中,漏磁通检测历史最长,因其能检测出管岛内、外腐蚀产生的体积型缺陷,对检测环境要求低,可兼用于输油和输气管道,可间接判断涂层状况,其应用范围最为广泛。由于漏磁通量是一种相对地噪音过程,即使没有对数据采取任何形式的放大,异常信好在数据记录中也很明显,其应用相对较为简单。值得注意的是,使用漏磁通检测仪对管道检测时,需控制清管器的运行速度,漏磁通对其运载工具运行速度相当敏感,虽然目前使用的传感器替代传感器线圈降低了对速度的敏感性,但不能完全消除速度的影响。该技术在对管道进行检测时,要求管壁达到完全磁性饱和。因此测试精度与管壁厚度有关,厚度越大,精度越低,其适用范围通常为管壁厚度不超过12 mm。该技术的精度不如超声波的高,对缺陷准确高度的确定还需依赖操作人员的经验。
4. 压电超声波检测技术
压电超声波检测技术原理类似于传统意义上的超声波检测,传感器通过液体耦合与管壁接触,从而测出管道缺陷。超声波检测对裂纹等平面型缺陷最为敏感,检测精度很高,是目前发现裂纹最好的检测方法。但由于传感器晶体易脆,传感器元件在运行管道环境中易损坏,且传感器晶体需通过液体与管壁保持连续的耦合,对耦合剂清洁度要求较高。因此仅限于液体输送管道。
5. 电磁波传感检测技术(EMAT)
超声波能在一种弹性导电介质中得到激励,而不需要机械接触或液体耦合。这种技术是利用电磁物理学原理以新的传感器替代了超声波检测技术中的传统压电传感器。当电磁波传感器载管壁上激发出超声波能时,波的传播采取已关闭内、外表面作为“波导器”的方式进行, 当管壁是均匀的,波延管壁传播只会受到衰减作用;当管壁上有异常出现时,在异常边界处的声阻抗的突变产生波的反射、折射和漫反射,接收到的波形就会发生明显的改变。由于基于电磁声波传感器的超生壁检测最重要的特征是不需要液体耦合剂来确保其工作性能。因此该技术提供了输气管道超声波检测的可行性,是替代漏磁通检测的有效方法。