㈠ 测量方法的物理学中相关定义
在国际单位制中,物理学中有三个基本单位,就是长度米(L),时间秒(S)和质量千克(Kg)。所有其他物理学中的单位都可以用这三个基本单位来表示或导出。 The second is defined as the time needed for 9,192,631,770 vibrations of cesium atoms. 秒的定义来源于人们对两个太阳日之间时间的计时,最后采用了原子钟的单位,达到了足够的精确度。
在现行国际单位制下,在1967年召开的第13届国际度量衡大会对秒的定义是:铯133原子基态的两个超精细能阶间跃迁对应辐射的9,192,631,770个周期的持续时间。这个定义提到的铯原子必须在绝对零度时是静止的,而且在地面上的环境是零磁场。在这样的情况下被定义的秒,与天文学上的历书时所定义的秒是等效的。 目前还没有原子标准,只有一个标准质量(cylinder of platinum-iridium)保存在Bureau Internatinal des Poides et Musures.
本质上,三个基本单位总是足够的,因为在物理上总是将世界的所有复杂的性质简化为质点的性质。当面对复杂的物理量的时候,例如电荷,物理学家总是会问这个量会如果影响质点。而质点可以用位置作为时间的函数加上质量完全地描述,需要三个也只需要三个单位。 在考察宇宙中存在的时间、空间、和质量的时候,会发现其中存在着一些重要的巧合。宇宙中最长的对象的长度和最短的对象的长度之比是1040,而宇宙中最长的时间和最短的时间之比是1040,但是宇宙中最大的质量和最小的质量之比是(1040)2。目前还不知道这些数据是否暗示了宇宙物理与基本粒子物理之间存在着某种联系。
很讨厌这样的假设,无法从最基本的原理推导出来,但是却是整个经典物理的基础,好在也不难记,靠每个人的日常经验就可以了
㈡ 大学物理实验中有哪几种测量光波波长的方法 急~
干涉法,衍射法,这两个是测量波长的最基本的方法,其中各自衍生出许多测量方法,比如光栅,比如干涉仪,比如单缝,比如金属丝,等等。
光通过双缝干涉仪上的单缝和双缝后,得到振动情况完全相同的光,它们在双缝后面的空间互相叠加会发生干涉现象。如果用单色光照射,在屏上会得到明暗相间的条纹;如果用白光射,可在屏上观察到彩色条纹。
本实验要测单色光的波长,光源发生的光经滤色片成为单色光,单色光通过双缝变成频率相同、相位差恒定的相干光,干涉后产生明暗相同的等间距直条纹,条纹的间距与相干光源的波长有关。
设双缝宽d,双缝到屏的距离为L,相干光源的波长为λ,则产生干涉图样中相邻两条亮(或暗)条纹之间的距离△x,由此得: λ=L△x /d,因此只要测得d、L,△x即可测得波长。
相干光源的产生用“一分为二”的方法,用单缝取单色光,再通过双缝,单色光由滤光片获得。△x的测量可用测量头完成,测量头由目镜,划板,手轮等构成,通过测量头可清晰看到干涉条纹,分划板上中间有刻线。
以此为标准,并根据手轮的读数可求得△x,由于△x较小,可测出几条亮(或暗)条纹的间距a,则相邻两条闻之间的距离△x=a/n。
(2)物理基础测量方法扩展阅读:
光波具有波粒二象性,也就是说从微观来看,由光子组成,具有粒子性;从宏观来看又表现出波动性。根据量子场论(或者量子电动光波是一种特定频段的电磁波力学),光子是电磁场量子化之后的直接结果。
光的粒子性揭示了电磁场作为一种物质,是与分子、原子等实物粒子一样,有其内在的基本结构(组成粒子)的。而在经典的电动力学理论中,是没有“光子”这个概念的。
光波作为一种特定频段是电磁波,其颜色与频率有关。可见光中紫光频率最大,波长最短。红光则刚好相反。
㈢ 物理长度测量:有哪些特殊的测量方法
△长度的特殊测量方法:
(1)测多算少:测量细铜丝的直径、一张纸的厚度等微小量常用累积法(当被测物体长度较小,测量工具精度不够时可将较小的物体累积起来,用刻度尺测量之后,再求得单一物体的长度);
(2)以直代曲:测地图上铁路两点间的距离,圆的周长等常用化曲为直法(把不易拉长的软线重合待测曲线上标出起点终点,然后拉直测量);
(3)辅助法等长测量:测硬币、球、园柱的直径、圆锥的高等常用辅助法(对于用刻度尺不能直接测出的物体长度可将刻度尺三角板等组合起来进行测量).如图所示;
(4)轮滚法等长测量:测操场跑道的长度等常用轮滚法(用已知周长的滚轮沿着待测曲线滚动,记下轮子圈数,就可算出曲线长度).
(5)物体投影正比法测量:测量高大建筑物的高度,利用平行光投影,相似图形成比例:n1/n2=l1/l2,计算出实物高度.
附图如下:
㈣ 初中物理17种测电阻的方法。比如伏安法,伏伏法等
(一)伏安法测电阻
伏安法测电阻是初中物理中一个重要的实验,本实验可以利用电压表和电流表分别测出未知电阻Rx的电压、电流,再用欧姆定律的变形公式求出Rx的阻值。由于电压表也叫伏特表,电流表也叫安培表,所以这种用电压表、电流表测电阻的方法叫“伏安法”。
(二)测电阻的几种特殊方法
1.只用电压表,不用电流表
方法一:如果只用一只电压表,用图3所示的电路可以测出未知Rx的阻值。
具体的作法是先用电压表测出Rx两端的电压为Ux;再用这只电压表测出定值电阻R0两端的电压为U0。根据测得的电压值Ux、U0和定值电阻的阻值R0,可计算出Rx的值为:
用这种方法测电阻时一只电压表要连接两次。
方法二:如果只用一个电压表,并且要求只能连接一次电路,用图4所示的电路可以测出未知Rx的阻值。
具体的作法是先闭合S1,读出电压表的示数为U1,再同时闭合S1和S2,读出这时电压表的示数为U2。根据测得的电压值U1、U2和定值电阻的阻值R0。
根据分压公式可计算出Rx的值:
方法三:如果只用一个电压表,并且要求只能连接一次电路,用图5所示的电路可以测出未知Rx的阻值。
具体的作法是先把滑动变阻器的滑片P调至B端,闭合开关,记下电压表示数U1;把滑动变阻器的滑片P调至A端,记下电压表示数U2。根据测得的电压值U1、U2和定值电阻的阻值R0,可计算出Rx的值:
以上方法,需要测量两次电压,所以也叫“伏伏法”;根据所给器材有电压表和一个已知阻值的电阻R0,所以又叫“伏阻法”。
2.只用电流表,不用电压表
方法一:如果只用一只电流表,用图6所示的电路可以测出未知Rx的阻值。先后用电流表测出通过R0和Rx的电流分别为I0、Ix,根据测得的电流值I0、Ix和定值电阻的阻值R0,根据分流公式可计算出Rx的值为
方法二:用图7所示的实验电路也可以测出未知Rx的阻值。先闭合开关S1,读出电流表的示数为I1,再断开S1闭合S2,读出这时电流表的示数为I2。根据测得的电流值I1、I2和定值电阻的阻值R0。
根据分流公式可计算出Rx的值:
方法三:如果只用一个电流表,并且要求只能连接一次电路,用图8所示的电路也可以测出未知Rx的阻值。
具体的作法:是先闭合开关S1,读出电流表的示数为I1,再同时闭合S1、S2,读出这时电流表的示数为I2。根据测得的电流值I1、I2和定值电阻的阻值R0。
计算过程如下:设电源电压为U,当只闭合S1时,根据欧姆定律的变形公式U=I(Rx+R),可得U=I1(Rx+R0)①;当再同时闭合S1、S2,R0被短路,这时有:U=I2Rx②。
联立①②解方程组得
方法四:如果只用一个电流表,并且要求只能连接一次电路,用图9所示的电路也可以测出未知Rx的阻值。
具体的作法:把滑动变阻器的滑片 P 调至A端,读出电流表的示数为IA,再把滑动变阻器的滑片P调至B端,读出这时电流表的示数为 IB。根据测得的电流值IA、IB和定值电阻的阻值RAB。同样可计算出Rx的值:
以上方法,需要测量两次电流,所以也叫“安安法”;根据所给器材有电流表和一个已知阻值的电阻R0,所以又叫“安阻法”。
总之,用伏安法测电阻的基本原理是测定电阻两端的电压和流过电阻的电流。在缺少器材(电流表或电压表)的情况下,我们可用间接的方法得到电压值或电流值,仍然可以测量电阻的阻值。因此,在进行实验复习时要特别重视原理的理解,这是实验设计的基础。
3.等效替代法
方法一:用图10所示的电路也可以测出未知Rx的阻值。当S扳到A时电流表的示数为I,再将 S 扳到B时,调节R0(电阻箱)的电阻,使电流表示数仍为I,即RX=R0。
方法二:若只有一只电压表和电阻箱,则可用替代法测电阻的阻值,如图11所示。先合上开关S1,把单刀双掷开关S2打到1,调节滑动变阻器的阻值,使电压表有一合适的示数U0。再把单刀双掷开关S2打到2,调节电阻箱的阻值,使电压表的示数仍为U0,则此时电阻箱的示数即为待测电阻Rx的阻值,即RX=R0。
等效法虽然也有一块电压表或一块电流表,但在电路中的作用不是为了测量出电压或电流,而是起到标志作用。
㈤ 物理学中常见的测量方法
1. 控制变量法
当某一物理量受到几个不同物理量的影响,为了确定各个不同物理量的影响,要控制某些量,使其固定不变,改变某一个量,看所研究的物理量与该物理量之间的关系。如:研究液体的压强与液体密度和深度的关系。
2. 理想模型法
在用物理规律研究问题时,常需要对它们进行必要的简化,忽略次要因素,以突出主要矛盾。用这种理想化的方法将实际中的事物进行简化,便可得到一系列的物理模型。如:电路图是实物电路的模型;力的示意图或力的图示是实际物体和作用力的模型。
3. 转换法
物理学中对于一些看不见、摸不着的现象或不易直接测量的物理量,通常用一些非常直观的现象去认识,或用易测量的物理量间接测量,这种研究问题的方法叫转换法。如:奥斯特实验可证明电流周围有磁场;扩散现象可证明分子做无规则运动。
4. 等效替代法
等效的方法是指面对一个较为复杂的问题,提出一个简单的方案或设想,而使它们的效果完全相同,将问题化难为易,求得解决。例如:在曹冲称象中用石块等效替换大象,效果相同。
5. 类比法
根据两个(或两类)对象之间在某些方面的相同或相似而推出它们在其他方面也可能相同或相似的一种逻辑思维。如: 用抽水机类比电源。
6. 比较法
通过观察,分析,找出研究对象的相同点和不同点,它是认识事物的一种基本方法。如:比较发电机和电动机工作原理的异同。
7. 实验推理法
是在观察实验的基础上,忽略次要因素,进行合理的推想,得出结论,达到认识事物本质的目的。如:研究物体运动状态与力的关系实验;研究声音的传播实验等。
8. 比值定义法
就是用两个基本的物理量的“比”来定义一个新的物理量的方法。其特点是被定义的物理量往往是反映物质的最本质的属性,它不随定义所用的物理量的大小取舍而改变。如:速度、密度、压强、功率、比热容、热值等概念公式采取的都是这样的方法。
9. 归纳法
从一般性较小的前提出发,推出一般性较大的结论的推理方法叫归纳法。如;验证杠杆的平衡条件,反复做了三次实验来验证F1 L1= F2 L2
10.估测法
根据题目给定的条件或数量关系,可以不精确计算,而经分析、推理或进行简单的心算就能找出答案的一种解题方法。它的最大优点是不需要精确计算,只要对数据进行粗略估计或模糊计算,就能使问题迎刃而解。(1)解答时应了解一些常用的物理数据:家庭照明电压值220V、每层楼高3m左右、一个鸡蛋的质量约50g、成人身高约1.60~1.80m、人体的密度约为1.0×103kg/m3、人的心跳约1秒70~80次、人体电阻约为几千~几百千欧、人正常步行的速度1.4m/s、自行车一般行驶速度约5m/s、一本物理课本的质量约230g、一张报纸平铺在桌面产生的压强约0.5Pa等。(2)记住一些重要的物理常数:光在真空中的传播速度、声音在空气中的传播速度、水的密度、水的比热容等。
㈥ 物理长度测量:有哪些特殊的测量方法
1
积薄为厚
,如
测量一张纸的厚度
细金属丝的直径
2
变曲为直,
如测量地图上铁路线的长度。
3
等量代换。如测量
圆锥体的高度。
4
天平称量
例如
测一卷细金属丝的长度。可以用天平测1米的质量。再测量总质量。
㈦ 物理(测量)方法
你好:
累积法可用于测量纸的大致厚度,比如用毫米刻度尺测量《科学》教科书一张纸的厚度,步骤如下
1、观察毫米刻度尺的0刻度线及其他刻度线是否磨损;
2、在《科学》教科书中选出100(50张纸)页,并压实;
3、连续3次测出这50张纸的厚度,取平均数。4
用平均数除以50即得到每张纸的厚度。
㈧ 物理实验的方法有哪些
1 控制变量法:这个应该是最常见的实验方法。
例如,在“探究压强与哪些因素有关”、“探究电流与电阻的关系”、“研究弦乐器的音调与弦的松紧、长短和粗细的关系”等实验中都用到了该实验方法。
2 类比法:例如,在学习电流时,为了更好地理解,与生活中熟悉的水流作类比。
实验+推理法:有些理论只有在理想空间里才能通过实验得出,此时,我们可以在现实条件实验的基础上推导出来这些理论。
例如,在初二我们学过牛顿第一定律:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。我们知道,物体在运动过程中必定会受到阻力作用,但是我们通过多次实验,可以推出这一结论。
3 描述法:例如,在生活中是不存在光线的,我们为了更好地学习光,才引进了“光线”这一词。
4 转换法:例如,我们在学习“声音是振动产生的”这一知识时,我们把音叉的微小振动转换为乒乓球的摆动。使实验现象更为明显。
5 模型法:我们在学习原子结构时,为了更好地认识原子的内部结构,用太阳系模型代表原子结构。
(8)物理基础测量方法扩展阅读:
物理实验是初高中阶段物理课程中包含的相关实验,包括电学实验、力学实验、热学实验、光学实验等等,常用于验证物理学科的定理定律。
实验物理是相对于理论物理而言,理论物理是从理论上探索自然界未知的物质结构、相互作用和物质运动的基本规律的学科。
理论物理的研究领域涉及粒子物理与原子核物理、统计物理、凝聚态物理、宇宙学等,几乎包括物理学所有分支的基本理论问题。而实验物理主要是从实验上来探索物质世界和自然规律。
实验室使用守则
1、为保护实验仪器和保持环境卫生,学生必须脱鞋进入实验室。
2、实验室是全校师生进行实验教学和科研活动的场所,学生进入实验室后要保持肃静,遵守纪律。
3、做实验前,认真听教师讲解实验目的、步骤、仪器的性能操作、方法和注意事项,认真检查所需仪器设备是否完好齐全,如有缺损要及时向教师报告。
4、实验时要遵守操作规程,按照实验步骤认真操作。
5、实验时要注意安全,防止意外发生。
6、爱护实验室仪器设备。
7、实验完毕要认真清理仪器设备,关闭水源电源。
性质
1.真理性:物理学的理论和实验揭示了自然界的奥秘,反映出物质运动的客观规律。
2.和谐统一性:神秘的太空中天体的运动,在开普勒三定律的描绘下,显出多么的和谐有序。物理学上的几次大统一,也显示出美的感觉。牛顿用三大定律和万有引力定律把天上和地上所有宏观物体统一了。
麦克斯韦电磁理论的建立,又使电和磁实现了统一。爱因斯坦质能方程又把质量和能量建立了统一。光的波粒二象性理论把粒子性、波动性实现了统一。爱因斯坦的相对论又把时间、空间统一了。
3.简洁性:物理规律的数学语言,体现了物理的简洁明快性。如:牛顿第二定律,爱因斯坦的质能方程,法拉第电磁感应定律。
4.对称性:对称一般指物体形状的对称性,深层次的对称表现为事物发展变化或客观规律的对称性。如:物理学中各种晶体的空间点阵结构具有高度的对称性。竖直上抛运动、简谐运动、波动镜像对称、磁电对称、作用力与反作用力对称、正粒子和反粒子、正物质和反物质、正电和负电等。
5.预测性:正确的物理理论,不仅能解释当时已发现的物理现象,更能预测当时无法探测到的物理现象。例如麦克斯韦电磁理论预测电磁波存在,卢瑟福预言中子的存在,菲涅尔的衍射理论预言圆盘衍射中央有泊松亮斑,狄拉克预言电子的存在。
6.精巧性:物理实验具有精巧性,设计方法的巧妙,使得物理现象更加明显。
㈨ 物理的特殊测量方法有哪些
物理的特殊测量方法:
1、 积累法。把数个相同的微小量放在一起进行测量,再将测量结果除以被测量的个数就得到一个微小的数量。
2、化曲为直法。用几乎没有弹性的细线或细绳沿着曲线绕上一周,作好两端的记号或割除多余的部分,然后轻轻地拉直,放在刻度尺上测量出细线或细绳的长度,即为所测量的曲线的长度。
3、辅助器材法:就是用多个测量仪器进行测量。
4、滚轮法:可用一轮子沿曲线滚动,记下轮子滚动圈数,测出轮子的直径算出周长,用轮子周长乘以圈数就得到这一曲线的长度。
5、等量代替法:利用辅助工具(直角三角板)创造几何等量关系,然后进行测量。
㈩ 物理实验常用的基本测量方法有哪六类
1比较法(直接比较 间接比较)2放大法(积累放大 机械放大 光学放大 电学放大)3转换法
4模拟法(物理模拟 几何模拟 数学模拟)5补偿法(参量转换 能量转换)6干涉衍射法