消防配电系统的检测方法
1)查看消防控制室及各消防设施最末一级配电箱的标志,以及仪表、指示灯、开关、控制按钮。
2)核对配电箱控制方式及操作程序并进行试验:
①自动控制方式下,手动切断消防主电源,观察备用消防电源的投入及指示灯的显示;
②人为控制方式下,在低压配电室应先切断消防主电源,后闭合备用消防电源,观察备用消防电源的投入及指示灯的显示;
③查看最末一级配电箱运行情况。
火灾自动报警系统
点型感烟探测器的检测方法
1)采用发烟装置向探测器施放烟气,查看探测器报警确认灯、以及火灾报警控制器的火警信号显示。
2)消除探测器内及周围烟雾,报警控制器手动复位,观察探测器报警确认灯在复位前后的变化情况
点型感温探测器的检测方法
1)可复位点型感温探测器,使用温度不低于54℃的热源加热,查看探测器报警确认灯和火灾报警控制器火警信号显示;移开加热源,手动复位火灾报警控制器,查看探测器报警确认灯在复位前后的变化情况。
2)不可复位点型感温探测器,采用线路模拟的方式试验。
火灾报警控制器的检测方法
1)触发自检键,对面板上所有的指示灯、显示器和音响器件进行功能自检。
2)切断主电源,查看备用直流电源自动投入和主、备电源的状态显示情况。
3) 在备用直流电源供电状态下,进行断路故障报警及火警优先功能、二次报警功能检测:
①模拟探测器、手动报警按钮断路故障,查看故障显示。
②断路故障报警期间,采用发烟装置或温度不低于54℃的热源,先后向同一回路中两个探测器施放烟气或加热,查看火灾报警控制器的火警信号、报警部位显示及记录。每个探测器检测后,只消音,不复位。
4)用万用表测量火灾报警控制器的联动输出信号。
5) 系统复位,恢复到正常警戒状态。
消防联动控制设备的检测方法
1)对面板上所有的指示灯、显示器和音响器件进行功能自检。
2)切断主电源,查看备用直流电源自动投入和主、备电源的状态显示情况。
3)在备用直流电源供电状态下,进行下列检测:
①核对消防控制设备的联动控制功能和逻辑控制程序。
②在接线端子处,模拟消防联动控制设备与输入/输出模块间连线的断路、短路故障并用秒表计时,查看声、光故障报警信号。
③远程手动启动各联动控制消防设备,查看控制信号的传输;系统复位。
4)恢复至正常警戒状态。
室内消火栓系统的检测方法
1)选择最不利处消火栓,连接压力表及闷盖,开启消火栓,测量栓口静水压力。
2)连接水带、水枪,触发启泵按钮,查看消防泵启动和信号显示,测量栓口静水压力。
3)按设计出水量开启消火栓,测量最不利处消火栓出水压力。
4)按设计出水量开启消火栓,测量最有利处消火栓出水压力。
5)系统恢复正常状态
自动喷水灭火系统的检测方法
湿式系统的检测方法
1)开启最不利处末端试水装置,查看压力表显示;查看水流指示器、压力开关和消防水泵的动作情况及反馈信号。
2)测量自开启末端试水装置至消防水泵投入运行的时间。
3)用声级计测量水力警铃声强值。
4)系统恢复正常。
干式系统的检测方法
1)开启最不利处末端试水装置控制阀,查看水流指示器、压力开关和消防水泵、电动阀的动作情况及反馈信号,以及排气阀的排气情况。
2)测量自开启末端试水装置到出水压力达到0.05MPa的时间。
3)系统恢复正常。
预作用系统的检测方法
1)先后触发防护区内两个火灾探测器,查看电磁阀、电动阀、消防水泵和水流指示器、压力开关的动作情况及反馈信号,以及排气阀的排气情况。
2)报警后2min打开末端试水装置,测量出水压力。
3)用声级计测量水力警铃声强值。
4)系统恢复正常。
雨淋系统的检测方法
1)并联设置多台雨淋阀的系统,核对控制雨淋阀的逻辑关系。
2)先后触发防护区内两个火灾探测器或为传动管泄压,查看电磁阀、消防水泵及压力开关的动作情况及反馈信号。
3)用声级计测量水力警铃声强值。
4)不宜进行实际喷水的场所,应在试验前关严雨淋阀出口控制阀。
5)系统恢复正常。
气体灭火系统的检测方法
1)查看防护区内的声光报警装置,入口处的安全标志、声光报警装置,以及紧急启、停按钮。
2)系统设定在自动控制状态,拆开该防护区启动钢瓶的启动信号线、并与万用表连接。将万用表调节至直流电压档后,触发该防护区的紧急启动按钮并用秒表开始计时,测量延时启动时间,查看防护区内声光报警装置、通风设施、以及入口处声光报警装置等的动作情况,查看气体灭火控制器与消防控制室显示的反馈信号。完成试验后将系统恢复至警戒状态。
3)先后触发防护区内两个火灾探测器,查看气体灭火控制器的显示。在延时启动时间内,触发紧急停止按钮,达到延时启动时间后查看万用表的显示及相关联动设备。完成试验后将系统恢复至警戒状态。
4)当进行喷气试验时,应符合GB50263—97《气体灭火系统施工及验收规范》第5.4.3条要求。
机械排烟系统检测方法
1)自动控制方式下,分别触发两个相关的两个火灾探测器,查看相应排烟阀、排烟风机、送风机的动作和信号反馈情况。通风与排烟合用系统,同时查看风机运行状态的转换情况。
2)采用风速仪,按下列方法测量排烟风口的风速:
① 小截面风口(风口面积小于0.3m2),可采用5个测点,见图1所示。
② 当风口面积大于0.3m2时,对于矩形风口,见2所示,按风口断面的大小划分成若干个面积相等的矩形,测点布置在图每个小矩形的中心,小矩形每边的长度为200mm左右;对于条形风口见图3所示,在高度方向上,至少安排两个测点,沿其长度方向上,可取4-6个测点;对于圆形风罩,见图4所示,并至少取5个测点,测点间距≤200mm。
③ 若风口气流偏斜时,可临时安装一截长度为0.5-1m,断面尺寸与风口相同的短管进行测定。
3)按下列公式计算排烟风口的平均风速:
Vp=(V1+V2+V3+……Vn)/n
式中:Vp—风口平均风速,m/s;
V1、V2、V3、……Vn—各测点风速,m/s;
n—测点总数
4)按下列公式计算排烟量。
L=3600Vp·F(m3/h)
式中:
L=排烟量(m3/h)
Vp=排烟口平均风速m/s
F=排烟口的有效面积m2
5)分别触发两个相关的火灾探测器或触发手动报警按钮,查看相应区域电动排烟窗动作情况及反馈信号。
6)全部复位,恢复到正常警戒状态。
疏散指示标志的检测方法
1)查看外观和位置,核对指示方向。
2)关闭正常照明,查看发光疏散指示标志的自发光情况,测试亮度。
3)切断正常供电电源,在灯光疏散指示标志前通道中心处,用照度计测量地面照度;达到规定的应急工作状态持续时间时,重复测量上述测点的照度。
4)系统复位。
应急广播系统的检测方法
1)在消防控制室用话筒对所选区域播音,检查音响效果。
2)自动控制方式下,分别触发两个相关的火灾探测器或触发手动报警按钮后,核对启动火灾应急广播的区域、检查音响效果。
3)公共广播扩音机处于关闭和播放状态下,自动和手动强制切换火灾应急广播。
4)用声级计测试启动火灾应急广播前的环境噪音,当大于60dB时,重复测量启动火灾应急广播后扬声器播音范围内最远点的声压级,并与环境噪音对比。
防火门的检测方法
1)查看外观、关闭效果,双扇门的关闭顺序。
2)关闭后,分别从内外两侧开启。
3)开启常闭防火门,查看关闭效果。
4)分别触发两个相关的火灾探测器,查看相应区域电动常开防火门的关闭效果及反馈信号。
5)疏散通道上设有出入口控制系统的防火门,自动或远程手动输出控制信号,查看出入口控制系统的解除情况及反馈信号。
6)全部复位,恢复正常状态。
防火卷帘的检测方法
1)查看外观。
2)按下列方式操作,查看卷帘运行情况反馈信号后复位。
① 机械操作卷帘升降。
②触发手动控制按钮。
③消防控制室手动输出遥控信号。
④分别触发两个相关的火灾探测器。
3)恢复至正常状态。
消防电梯的检测方法
1)触发首层的迫降按钮,查看消防电梯运行情况。
2)在轿厢内用专用对讲电话通话,并控制轿厢的升降。
3)用秒表测量自首层升至顶层的运行时间。
4)具有联动功能的消防电梯,分别触发两个相关的火灾探测器,查看电梯的动作情况和反馈信号。
5) 触发消防控制设备远程控制按钮,重复试验。
6)恢复正常状态。
㈡ 卫星电视广播信号处理的流程是什么
首先对电视信号进行调制,把电视信号调制到上行射频,再对这个射频信号进行放大,经卫星天线发送到卫星,卫星接收到这个信号以后,通过卫星转发器进行频率变换,把这个信号转换成下行射频信号,地面卫星接收设备收到这个下行信号后进行低噪声放大,再对信号进行解调,还原出电视信号。
㈢ 消防应急广播该如何正确使用
这个按照规范要求的设置的间距不超过 6.6.1 消防应急广播扬声器的设置,应符合下列规定: 1 民用建筑内扬声器应设置在走道和大厅等公共场所。每个扬声器的额定功率不应小于 3W ,其数量成能保证从一个防火分区内的任何部位到最近一个扬声器的直线距离不大于 25m ,走道末端距最近的扬声器距离不应大于 12.5m 。 2 在环境噪声大于 60dB 的场所设置的扬声器,在其播放范围内最远点的播放声压级应高于背景噪声 15dB 。 3 客房设置专用扬声器时,其功率不宜小于 1W 。 6.6.2 壁挂扬声器的底边距地面高度应大于 2.2m 。
㈣ gps卫星测量定位的基本原理与方法
定位原理GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR,):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。可见GPS导航系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。所以如果想知道接收机所处的位置,至少要能接收到4个卫星的信号。GPS接收机可接收到可用于授时的准确至纳秒级的时间信息;用于预报未来几个月内卫星所处概略位置的预报星历;用于计算定位时所需卫星坐标的广播星历,精度为几米至几十米(各个卫星不同,随时变化);以及GPS系统信息,如卫星状况等。GPS接收机对码的量测就可得到卫星到接收机的距离,由于含有接收机卫星钟的误差及大气传播误差,故称为伪距。对 CA码测得的伪距称为CA码伪距,精度约为20米左右,对P码测得的伪距称为P码伪距,精度约为2米左右。GPS接收机对收到的卫星信号,进行解码或采用其它技术,将调制在载波上的信息去掉后,就可以恢复载波。严格而言,载波相位应被称为载波拍频相位,它是收到的受多普勒频 移影响的卫星信号载波相位与接收机本机振荡产生信号相位之差。一般在接收机钟确定的历元时刻量测,保持对卫星信号的跟踪,就可记录下相位的变化值,但开始观测时的接收机和卫星振荡器的相位初值是不知道的,起始历元的相位整数也是不知道的,即整周模糊度,只能在数据处理中作为参数解算。相位观测值的精度高至毫米,但前提是解出整周模糊度,因此只有在相对定位、并有一段连续观测值时才能使用相位观测值,而要达到优于米级的定位 精度也只能采用相位观测值。按定位方式,GPS定位分为单点定位和相对定位(差分定位)。单点定位就是根据一台接收机的观测数据来确定接收机位置的方式,它只能采用伪距观测量,可用于车船等的概略导航定位。相对定位(差分定位)是根据两台以上接收机的观测数据来确定观测点之间的相对位置的方法,它既可采用伪距观测量也可采用相位观测量,大地测量或工程测量均应采用相位观测值进行相对定位。在GPS观测量中包含了卫星和接收机的钟差、大气传播延迟、多路径效应等误差,在定位计算时还要受到卫星广播星历误差的影响,在进行相对定位时大部分公共误差被抵消或削弱,因此定位精度将大大提高,双频接收机可以根据两个频率的观测量抵消大气中电离层误差的主要部分,在精度要求高,接收机间距离较远时(大气有明显差别),应选用双频接收机。
㈤ GPS卫星导航的原理和导航方法分别是什么
GPS的工作原理,简单地说来,是利用我们熟知的几何与物理上一些基本原理。首先我们假定卫星的位置为已知,而我们又能准确测定我们所在地点A至卫星之间的距离,那么A点一定是位于以卫星为中心、所测得距离为半径的圆球上。进一步,我们又测得点A至另一卫星的距离,则A点一定处在前后两个圆球相交的圆环上。我们还可测得与第三个卫星的距离,就可以确定A点只能是在三个圆球相交的两个点上。根据一些地理知识,可以很容易排除其中一个不合理的位置。当然也可以再测量A点至另一个卫星的距离,也能精确进行定位。 以上所说,要实现精确定位,要解决两个问题:
其一是要确知卫星的准确位置;
其二是要准确测定卫星至地球上我们所在地点的距离。下面我们看看怎样来做到这点。
GPS导航示意图
怎样确知卫星的准确位置
要确知卫星所处的准确位置。首先,要通过深思熟虑,优化设计卫星运行轨道,而且,要由监测站通过各种手段,连续不断监测卫星的运行状态,适时发送控制指令,使卫星保持在正确的运行轨道。将正确的运行轨迹编成星历,注入卫星,且经由卫星发送给GPS接收机。正确接收每个卫星的星历,就可确知卫星的准确位置。
这个问题解决了,接下来就要解决准确测定地球上某用户至卫星的距离。卫星是远在地球上层空间,又是处在运动之中,我们不可能象在地上量东西那样用尺子来量,那么又是如何来做的呢?
如何测定卫星至用户的距离
我们过去都学过这样的公式:时间X速度=距离。我们也从物理学中知道,电波传播的速度是每秒钟三十万公里,所以我们只要知道卫星信号传到我们这里的时间,就能利用速度乘时间等于距离这个公式,来求得距离。所以,问题就归结为测定信号传播的时间。
要准确测定信号传播时间,要解决两方面的问题。一个是时间基准问题。就是说要有一个精确的时钟。就好比我们日常量一张桌子的长度,要用一把尺子。假如尺子本身就不标准,那量出来的长度就不准。另一个就是要解决测量的方法问题。
时间基准问题
GPS系统在每颗卫星上装置有十分精密的原子钟,并由监测站经常进行校准。卫星发送导航信息,同时也发送精确时间信息。GPS接收机接收此信息,使与自身的时钟同步,就可获得准确的时间。所以,GPS接收机除了能准确定位之外,还可产生精确的时间信息。
测定卫星信号传输时间的方法
为了避免采用过多的技术术语,我们先作一个不太恰当的比喻。我们在所处的地点和卫星上同时启动录音机来播放“东方红”乐曲,那么,我们应该能听到一先一后两支“东方红”的曲子(实际上,卫星上播放的曲子,我们不可能听见,只是假想能够听到),但一定是不合拍的。为了使两者合拍,我们延迟启动地上录音机的时间。当我们听到两支曲子合拍时,启动录音机所延迟的时间就等于曲子从卫星传送到地上的时间。当然,电波比声波速度高得多,电波也不能用耳朵来接收。所以,实际上我们播送的不是“东方红”乐曲,而是一段叫做伪随机码的二进制电码。延迟GPS接收机产生的伪随机码,使与接收到卫星传来的码字同步,测得的延迟时间就是卫星信号传到GPS接收机的时间。至此,我们也就解决了测定卫星至用户的距离。当然,上面说的都还是十分理想的情况。实际情况比上面说的要复杂得多,所以我们还要采取一些对策。例如:电波传播的速度,并不总是一个常数。在通过电离层中电离子和对流层中水气的时候,会产生一定的延迟。一般我们这可以根据监测站收集的气象数据,再利用典型的电离层和对流层模型来进行修正。还有,在电波传送到接收机天线之前,还会产生由于各种障碍物与地面折射和反射产生的多径效应。这在设计GPS接收机时,要采取相应措施。当然,这要以提高GPS接收机的成本为代价。 原子钟虽然十分精确,但也不是一点误差也没有。GPS接收机中的时钟,不可能象在卫星上那样,设置昂贵的原子钟,所以就利用测定第四颗卫星,来校准GPS接收机的时钟。我们前面提到,每测量三颗卫星可以定位一个点。利用第四颗卫星和前面三颗卫星的组合,可以测得另一些点。理想情况下,所有测得的点,都应该重合。但实际上,并不完全重合。利用这一点,反过来可以校准GPS接收机的时钟。测定距离时选用卫星的相互几何位置,对测定的误差也不同。为了精确的定位,可以多测一些卫星,选取几何位置相距较远的卫星组合,测得误差要小。在我们提到测量误差时,还有一点要提到,就是美国的SA政策。美国政府在GPS设计中,计划提供两种服务。一种为标准定位服务(SPS),利用粗码(C/A)定位,精度约为100m,提供给民用。另一种为精密定位服务(PPS),利用精码(P码)定位,精度达到10m,提供给军方和特许民间用户使用。由于多次试验表明,SPS的定位精度已高于原设计,美国政府出于对自身安全的考虑,对民用码进行了一种称为“选择可用性SA(Selective Availability)”的干扰,以确保其军用系统具有最佳的有效性。由于SA通过卫星在导航电文中随机加入了误差信息,使得民用信号C/A码的定位精度降至二维均方根误差在100米左右。
采用差分GPS技术(DGPS),可消除以上所提到大部分误差,以及由于SA所造成的干扰,从而提高卫星导航定位的总体精度,使系统误差达到10到15米之内。
GPS技术的错差
在GPS定位过程中,存在三部分误差。一部分是对每一个用户接收机所共有的,例如:卫星钟误差、星历误差、电离层误差、对流层误差等;第二部分为不能由用户测量或由校正模型来计算的传播延迟误差;第三部分为各用户接收机所固有的误差,例如内部噪声、通道延迟、多径效应等。利用差分技术第一部分误差可完全消除,第二部分误差大部分可以消除,这和基准接收机至用户接收机的距离有关。第三部分误差则无法消除,只能靠提高GPS接收机本身的技术指标。对美国SA政策带来的误差,实质上它是人为地增大前两部分误差,所以差分技术也相应克服SA政策带来的影响。
差分GPS技术消除公共误差原理
假如在距离用户500公里之内,设置一部基准接收机。它和用户接收机同时接收某一卫星的信号,那么我们可以认为信号传至两部接收机所途经电离层和对流层的情况基本是相同,故所产生的延迟也相同。由于接收同一颗卫星,故星历误差、卫星时钟误差也相同。若我们通过其它方法确知所处的三维座标(也可以用精度很高的GPS接收机来实现,其价格比一般GPS接收机高得多),那就可从测得伪距中,推算其中的误差。将此误差数据传送给用户,用户就可从测量所得的伪距中扣除误差,就能达到更精确的定位。
GPS数据处理软件是GPS用户系统的重要部分,其主要功能是对GPS接收机获取的卫星测量记录数据进行“粗加工”、“预处理”,并对处理结果进行平差计算、坐标转换及分析综合处理。解得测站的三维坐标,测体的坐标、运动速度、方向及精确时刻。
GPS定位技术是正在发展中的高新技术,数据处理技术也处在不断更新之中,各系列GPS接收机制造厂家研制的处理软件也各具特色。 全球定位系统GPS是近年来开发的最具有开创意义的高新技术之一,其全球性、全能性、全天候性的导航定位、定时、测速优势必然会在诸多领域中得到越来越广泛的应用。在发达国家,GPS技术已经开始应用于交通运输和道路工程之中。目前,GPS技术在我国道路工程和交通管理中的应用还刚刚起步,相信随着我国经济的发展,高等级公路的快速修建和GPS技术应用研究的逐步深入,其在道路工程中的应用也会更加广泛和深入,并发挥更大的作用。 GPS导航系统与电子地图、无线电通信网络及计算机车辆管理信息系统相结合,可以实现车辆跟踪和交通管理等许多功能,这些功能包括: 车辆跟踪 利用GPS和电子地图可以实时显示出车辆的实际位置,并任意放大、缩小、还原、换图;可以随目标移动,使目标始终保持在屏幕上;还可实现多窗口、多车辆、多屏幕同时跟踪。利用该功能可对重要车辆和货物进行跟踪运输。
提供出行路线规划和导航 提供出行路线规划是汽车导航系统的一项重要辅助功能,它包括自动线路规划和人工线路设计。自动线路规划是由驾驶者确定起点和目的地,由计算机软件按要求自动设计最佳行驶路线,包括最快的路线、最简单的路线、通过高速公路路段次数最少的路线等的计算。人工线路设计是由驾驶者根据自己的目的地设计起点、终点和途经点等,自动建立线路库。线路规划完毕后,显示器能够在电子地图上显示设计线路,并同时显示汽车运行路径和运行方法。
信息查询 为用户提供主要物标,如旅游景点、宾馆、医院等数据库,用户能够在电子地图上根据需要进行查询。查询资料可以文字、语言及图象的形式显示,并在电子地图上显示其位置。同时,监测中心可以利用监测控制台对区域内的任意目标所在位置进行查询,车辆信息将以数字形式在控制中心的电子地图上显示出来。
(4)话务指挥
指挥中心可以监测区域内车辆运行状况,对被监控车辆进行合理调度。指挥中心也可随时与被跟踪目标通话,实行管理。
(5)紧急援助
通过GPS定位和监控管理系统可以对遇有险情或发生事故的车辆进行紧急援助。监控台的电子地图显示求助信息和报警目标,规划最优援助方案,并以报警声光提醒值班人员进行应急处理。
GPS技术在汽车导航和交通管理工程中的研究与应用目前在中国刚刚起步,而国外在这方面的研究早已开始并已取得了一定的成果。加拿大卡尔加里大学设计了一种动态定位系统,该系统包括一台捷联式惯性系统,两台GPS接收机和一台微机,可测定已有道路的线形参数,为道路管理系统服务。美国研制了应用于城市的道路交通管理系统,该系统利用GPS和GIS建立道路数据库,在数据库中包含有各种现时的数据资料,如道路的准确位置、路面状况、沿路设施等,该系统于1995年正式运行,为城市道路交通管理起到重要作用。近些年来国外研制了各种用于车辆诱导的系统,其中车辆位置的实时确定以往主要依据惯性测量系统以及车轮传感器,随着GPS的发展和所显示出的优越性,有取代前两种方法的趋势。用于城市车辆诱导的GPS定位一般是在城市中设立一个基准站,车载GPS实时接收 基准站发射的信息,经过差分处理便可计算出实时位置,把目前所处位置与所要到达的目标在道路网中进行优化计算,便可在道路电子地图上显示出到达目标的最优化路线,为公安、消防、抢修、急救等车辆服务。
㈥ 工程上GPS卫星定位怎么用
方法如下:
1、定位方式有两种,一种是静态测量,一种是动态测量,也叫差分测量,又分为实时差分和后处理差分,但是实时差分用的比较多一些,可以快速获取定位点的三维坐标。
2、对于静态测量来说,就是同时用几台GPS长时间观测,时间可根据工程需要而定,然后将观测的数据,用软件进行解算以及平差,得到高精度的三维定位坐标。
3、对于动态测量,就是用一个或多个GPS接收机作为基准站,其他的作为流动站,基准站接收来自卫星的信号,同时向流动站以数据链的形式发送差分数据,流动站在接收卫星信号的同时,接收来自基准站的差分信号,进行实时差分,获取定位点的三维坐标信息。
(6)卫星应急广播测量方法扩展阅读
全球定位系统的主要用途:
1、陆地应用,主要包括车辆导航、应急反应、大气物理观测、地球物理资源勘探、工程测量、变形监测、地壳运动监测、市政规划控制等;
2、海洋应用,包括远洋船最佳航程航线测定、船只实时调度与导航、海洋救援、海洋探宝、水文地质测量以及海洋平台定位、海平面升降监测等;
3、航空航天应用,包括飞机导航、航空遥感姿态控制、低轨卫星定轨、导弹制导、航空救援和载人航天器防护探测等。
具体应用如下:
1、船舶远洋导航和进港引水
2、飞机航路引导和进场降落
3、汽车自主导航
4、地面车辆跟踪和城市智能交通管理
5、紧急救生
6、个人旅游及野外探险
7、个人通讯终端(与手机,PDA,电子地图等集成一体):电力,邮电,通讯等网络的时间同步:准确时间的授入、准确频率的授入
8、测绘相关:道路和各种线路放样、水下地形测量、地壳形变测量,大坝和大型建筑物变形监测
9、GIS应用:工程机械(轮胎吊,推土机等)控制、精细农业
㈦ 应急广播系统是什么
应急广播是指利用广播电视、网络视听等信息传送方式,向公众或特定区域、特定人群发布应急信息的传送播出系统。国家广播电视总局负责制定和调整全国应急广播体系建设规划,统筹全国应急广播体系建设、运行和管理,建立国家级应急广播调度控制平台和效果监测评估体系,监督管理全国应急广播播出情况。
㈧ 卫星天线的仰角和方位角如何测量
本问题举例进行说明:
周口市的地理位置是东经114°38′,北纬33°37′,亚洲3S卫星轨道位置是东经10°55′。天线仰角是指抛物面天线中心MN与水平线OM之间的夹角H(如图)。天线方位角是指:从接收点的正北方向开始,顺时针方向至天线中心线在水平面上正投影线的角度。根据以下公式:
z为天线所指卫星的径度;
x为地面站径度;
φ为地面站纬度;
R为地球半径,R=6378km。
h为卫星高度,h=35786km。
R/(R+h)=42164km。
经计算得出周口市接收亚洲3S卫星的天线仰角为50°34′,方位角南偏162°。
(8)卫星应急广播测量方法扩展阅读
接收天线调整
天线方位角及仰角的调整:
调整天线的仰角及方位角,这里介绍两种行之有效的方法:相对值法与绝对值法。
①相对值法:此法是先计算出接收当前卫星与接收预收卫星时天线仰角与方位角的差值,然后对天线进行相应的调整。举例来说,在武汉市调整原接收中星五号(115.5°E)的天线至接收亚太1A号(134°E),天线的方位角及仰角分别为:
中星五号 AZ=177.6°;EL=54.3°
亚太1A号 AZ=144.9°;EL=48.3°
显然方位角应减少即向东转177.6°-144.9°=32. 7°,仰角应下调54.3°-48.3°=6.0°。
由于在调整中是取相对值进行的,测量位置本身的偏差在计算中已经被消除了,因此对罗盘的测量位置要求不高,只要保持测量位置不变即可。此法较适合于天线换星操作和偏馈天线。
②绝对值法:此法只需计算出天线最终仰角及方位角,而无需考虑当前状态。以罗盘读数作参考也能较快将天线调至所需位置,但在使用罗盘时一定要严格选择测量位置,尽量减小由于测量位置选择不当引起的误差。
这两种方法各有优缺点,可根据具体情况选择使用或结合使用。
天线仰角及方位角的调整对于接收C波段模拟电视信号或许不算太困难,但对于接收数字电视信号特别是Ku波段电视信号就没有那么简单。笔者建议务必按以下步骤进行,除非条件不具备。
首先接收该卫星上C波段模拟电视信号,以求将天线大致对准卫星,在多数情况下这一条件都能得到满足。
其次接收C波段数字电视信号或者改换Ku波段高频头接收该波段模拟电视信号,这一条件不一定能满足。
最后接收Ku波段数字电视信号。有些Ku波段天线不能换C波段高频头,但也应尽可能从第二步做起 。
微调
经过以上几个步骤,大多数情况下是能收到卫星信号的,但接收效果不一定理想,为此必须进行微调。
仰角、方位角的微调:反复微调仰角及方位角,注意监视器上图像、伴音的变化情况,直到图像、伴音信号达到最佳状态。在微调期间,一定要注意分清天线的主瓣和旁瓣,以主瓣接收信号,收视效果明显要优于旁瓣。
馈源及极化的调整:完成仰角及方位角的微调后应将其稍微固定,然后适当移动馈源的位置,调整焦距。同时由于我国卫星广播采用线极化方式传送,因此务必对极化进行细心的调整。最终的目标是使模拟接收机的输入信号电平最强,数字接收机的误码率最低,以保证监视器上信号最佳。
调试完毕后,整个卫星接收系统已处于最佳工作状态,可将馈源、极化器、仰角和方位角等固定好 。
㈨ 应急广播有几种开启方法
消防控制室值机人员接到确切报警后,应操作消防报警设备动作.对于有联动系统的 消防设备,只需用确认键或手自动转换键加以确认,声光报警器发出声、光报警和启动消 防应急广播自动进行.声光报警器发出报警.火灾信息确认后,值机人员相应打开防火分区的声光报 警器.启动消防应急广播.火灾信息确认后,值机人员相应切换防火分区的消防应急 广播.消防电话求救.当火灾发生时,值机人员应及时向领导、向119汇报火情,并通 知本单位的消防部门.在向领导汇报的同时,消防值机人员可以用消防专用电话的群呼功能,通知各相关部 门,如变配电站、总机房、暖通、智能楼宇、各行政部门等.消防值机室应有直拨119的电话.