㈠ 数据分析中的变量分类
数据分析中的变量分类
数据分析工作每天要面对各种各样的数据,每种数据都有其特定的含义、使用范围和分析方法,同一个数据在不同环境下的意义也不一样,因此我们想要选择正确的分析方法,得出正确的结论,首先要明确分析目的,并准确理解当前的数据类型及含义。统计学中的变量指的是研究对象的特征,我们有时也称为属性,例如身高、性别等。每个变量都有变量值,变量值就是我们分析的内容,它是没有含义的,只是一个参与计算的数字,所以我们主要关注变量的类型,不同的变量类型有不同的分析方法。
变量主要是用来描述事物特征,那么按照描述的粗劣,有以下两种划分方法:
按基本描述划分【定性变量】:也称为名称变量、品质变量、分类变量,总之就是描述事物特性的变量,目的是将事物区分成互不相容的不同组别,变量值多为文字或符号,在分析时,需要转化为特定含义的数字。
定性变量可以再细分为:
有序分类变量:描述事物等级或顺序,变量值可以是数值型或字符型,可以进而比较优劣,如喜欢的程度:很喜欢、一般、不喜欢
无序分类变量:取值之间没有顺序差别,仅做分类,又可分为二分类变量和多分类变量 二分类变量是指将全部数据分成两个类别,如男、女,对、错,阴、阳等,二分类变量是一种特殊的分类变量,有其特有的分析方法。 多分类变量是指两个以上类别,如血型分为A、B、AB、O
【定量变量】:也称为数值型变量,是描述事物数字信息的变量,变量值就是数字,如长度、重量、产量、人口、速度和温度。
定量变量可以再细分连续型变量:在一定区间内可以任意取值,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。如身高、绳子的长度等。
离散型变量:值只能用自然数或整数单位计算,其数值是间断的,相邻两个数值之间不再有其他数值,这种变量的取值一般使用计数方法取得。
按照精确描述划分【定类变量】
测量事物类别或属性,各类支架没有顺序或等级,实际上也就是上面说的无序分类变量,所包含的数据信息很少,只能计算频数和频率,是最低层次的一种变量
【定序变量】
测量事物之间的等级或顺序,就是上述的有序分类变量,由于它的变量值可以是数值型或字符型,并且可以反映等级之间的优劣,除了可以计算频数和频率之外,还可以计算累计频率,因此数据包含的信息多于定类变量。
【定距变量】
测量事物的类别或顺序之间的间距,它不但具有定类和定序变量的特点,还能计算类别之间的差距,可以进行加减运算,数据包含的信息高于前两种
【定比变量】 测量事物类别比值,和定距变量相比,它不但可以进行加减运算,还可以进行乘除运算,包含的数据信息最多,是最高级的变量。
上面这四种变量可以从浅到深精确的描述事物,四种变量级别从低到高,高层次变量可以向低层次转化,代价是损失部分数据信息,但是低层次变量无法向高层次转化,这会得出错误结果。
按照变量的取值划分前面两种分类方法都是从变量对事物的描述角度出发进行分类,一旦对事物描述确定下来,那么变量的取值也就相应确定下来了,比如定性变量的取值只能是某属性下的计数,比如人数、客户数等,因此只能取特定的值,数值是离散的。而定量变量可以取某属性下的任意值,变量值即可连续也可离散,比如身高、体重、销售额等。连续型数值和离散型数值的分析方法是不同的,因此从统计学角度,又经常划分为连续型变量和定性变量(分类变量)
关于变量的类型及取值方法,可以归纳为下表
以上是小编为大家分享的关于数据分析中的变量分类的相关内容,更多信息可以关注环球青藤分享更多干货
㈡ 如何对excel表格中的变量进行描述统计分析
excel表格中的变量进行描述统计分析
选择“工具”下拉菜单。
2. 选择“数据分析”选项。(如无此选项,可利用“加载宏”的方法予以加载。)
3. 在数据分析工具中选择“描述统计”。选择“汇总统计" 确定
㈢ 如何分析两个变量之间的关系应该用何种统计学方法
(1)相关分析,研究现象之间是否存在某种依存关系
(2)回归分析,确定两种或两种以上变量间相互依赖的定量关系
㈣ 数据分析师如何使用统计数据
1.规划和解说试验以指导产品决策
数据剖析师能够协助确认这种差异是否足够显着,以致需求引起更多的关注,关注和出资。它们能够协助你了解试验成果,这在你测量多个指标,运行相互影响的试验或成果中产生某些Simpson悖论时特别有用。
2.树立猜测信号而非噪声的模型
数据剖析师能够告知你或许的原因,为什么销量增长了5%。数据剖析师能够协助你了解推进出售的要素,下个月的出售状况以及需求注意的潜在趋势。
请参阅什么是过度拟合的直观解说,尤其是对于少量样本集?过度拟合实际上是在做什么?高R,低标准误差的过高许诺怎么产生?了解为什么仅适合信号这一点很重要。
3.将大数据变成全局
任何人都能够观察到该企业有100,000个客户在你的杂货店购买10,000个项目。
数据剖析师能够协助你标记每个客户,将他们与相似的客户分组,并了解他们的购买习惯。这样一来,你便能够查看事务开展怎么影响特定人群,而不用整体看待每个人或独自看待每个人。
4.了解用户的参加度,保存率,转化率和潜在客户
为什么你的客户从你的网站上购买商品?你怎么保持客户回头客?为什么用户退出你的渠道?他们什么时候出来?你公司最喜欢哪种电子邮件来招引用户?参加,活动或成功的一些首要指标是什么?有哪些好的出售线索?
运用的统计数据:回归,因果剖析,潜在变量剖析,调查规划
5.给用户他们想要的东西
给定用户(客户,客户,用户)及其与公司项目(广告,商品,电影)之间的互动(点击,购买,评级)的矩阵,你能否建议用户接下来要购买哪些项目?
6.智能预算
0%能够很好地预算点击率吗?数据剖析师能够结合数据,全局数据和先验常识来获得抱负的估计值,告知你该估计值的属性,并总结该估计值的含义。
7.用数据讲故事
数据剖析师在公司中的人物是充任数据与公司之间的大使。沟通是关键,并且数据剖析师必须能够以公司能够运用的方法解说他们的见地,而又不牺牲数据的保真度。
数据剖析师不只简单地总结了数字,还解说了数字为何如此重要以及从中能够得到哪些可行的见地。
关于数据分析师如何使用统计数据,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
㈤ 医学论文写作中分析数据的统计方法有哪些
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:
打开网络APP,查看更多高清图片
一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。
二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。
三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。
另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。
医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。
至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显着性,有时会刻意回避报道差异的不显着结果,不思考和探究差异不显着的原因和意义,反而会因此忽视一些重大的科学发现。
㈥ 用于数据挖掘的统计分析方法有什么
1.记忆基础推理法,记忆基础推理法最主要的概念是用已知的案例来预测未来案例的一些属性。
2.市场购物篮分析。
3.决策树,决策树在解决归类与预测上有着极强的能力。
4.基因算法,基因算法学习细胞演化的过程。
5.群集侦测技术,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。
6.连结分析。
7.在线分析处理。
8.类神经网络类神经网络是以重复学习的方法,将一串例子交与学习,使其归纳出一足以区分的样式。
9.区别分析,通常应用在解决分类的问题上面。
10.罗吉斯回归分析,当区别分析中群体不符合常态分配假设时,罗吉斯回归分析是一个很好的替代方法。
关于数据挖掘的相关学习,推荐CDA数据师的相关课程,CDA数据分析师课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。
㈦ 如何根据变量类型选择数据分析方法
把握两个关键
1、抓住业务问题不放松。您费大力气收集数据的动机是什么?你想解决什么问题?这是核心,是方向,这是业务把握层面。
2、全面理解数据。哪些变量,什么类型?适合或者可以用什么统计方法,这是数据分析技术层面。须把握三大关键:变量、数据分析方法、变量和方法的关联。
认识数据分析方法
选择合适的数据分析方法是非常重要的。选择数据分析(统计分析)方法时,必须考虑许多因素,主要有:
1、数据分析的目的,
2、所用变量的特征,
3、对变量所作的假定,
4、数据的收集方法。选择统计分析方法时一般考虑前两个因素就足够了。
将变量与分析方法关联、对应起来
㈧ 双变量统计分析主要有哪些方法
直方图法、控制图法与相关图法 一、直方图法 (一)直方图的用途 直方图法即频数分布直方图法,它是将收集到的质量数据进行分组整理,绘制成频数分布直方图,用以描述质量分布状态的一种分析方法,所以又称质量分布图法。 作用——①通过直方图的观察与分析,可了解产品质量的波动情况,掌握质量特性的分布规律,以便对质量状况进行分析判断。 ②可通过质量数据特征值的计算,估算施工生产过程总体的不合格品率,评价过程能力等。 二、控制图法 (一)控制图的定义及其用途 1.控制图的定义 控制图又称管理图。它是在直角坐标系内画有控制界限,描述生产过程中产品质量波动状态的图形。利用控制图区分质量波动原因,判明生产过程是否处于稳定状态的方法称为控制图法。 2.控制图的用途 控制图是用样本数据来分析判断生产过程是否处于稳定状态的有效工具。它的用途主要有两个: (1)过程分析,即分析生产过程是否稳定。为此,应随机连续收集数据,绘制控制图,观察数据点分布情况并判定生产过程状态。 (2)过程控制,即控制生产过程质量状态。为此,要定时抽样取得数据,将其变为点子描在图上,发现并及时消除生产过程中的失调现象,预防不合格品的产生。 (二)控制图的种类 1.按用途分析 (1)分析用控制图。分析生产过程是否处于控制状态;连续抽样。 (2)管理(或控制)用控制图。用来控制生产过程,使之经常保持在稳定状态下;等距抽样。 2.按质量数据特点分类 (1)计量值控制图 (2)计数值控制图 (三)控制图的观察与分析 当控制图同时满足以下两个条件:一是点子几乎全部落在控制界限之内;二是控制界限内的点子排列没有缺陷。我们就可以认为生产过程基本上处于稳定状态。如果点子的分布不满足其中任何一条,都应判断生产过程为异常。
㈨ 统计学上分析多个变量对一个变量的影响,可以用什么方法
可以采用多元回归分析方法,即:在相关变量中将一个变量视为因变量,其他多个变量视为自变量,建立多个变量之间的非线性数学模型数量关系式,并利用样本数据进行分析的统计方法。
㈩ 统计学中常用的数据分析方法有哪些
1、描述统计
描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析、离中趋势分析和相关分析三大部分。
2、假设检验
参数检验:参数检验是在已知总体分布的条件下(一般要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。
非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
3、信服分析
介绍:信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。
信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:重测信度法、复本信度法、折半信度法、α信度系数法。