㈠ 层次分析法具体是怎么算的,比如下面
步骤1:分析系统中各因素间的关系,对同一层次各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较的判断矩阵; 步骤2:由判断矩阵计算被比较元素对于该准则的相对权重,并进行判断矩阵的一致性检验; 步骤3:计算各层次对于系统的总排序权重,并进行排序。最后,得到各方案对于总目标的总排序。
㈡ 请问层次分析法如何计算多份问卷
这个其实是看你突出什么重点。如果要突出问卷的每个项目,则先加权后再构造一个判断矩阵,如果要综合结果的比较,则先构造矩阵再做权生处理。按你上面的内容理解,应该是先构造矩阵,再做加权处理。
㈢ 层次分析法中的AW是怎么计算出来的
步骤1:分析系统中各因素间的关系,对同一层次各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较的判断矩阵。
步骤2:由判断矩阵计算被比较元素对于该准则的相对权重,并进行判断矩阵的一致性检验。
步骤3:计算各层次对于系统的总排序权重,并进行排序。最后,得到各方案对于总目标的总排序。
(3)层次分析法的计算方法扩展阅读:
计算步骤:
1、建立层次结构模型
将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。 最高层是指决策的目的、要解决的问题。 最低层是指决策时的备选方案。 中间层是指考虑的因素、决策的准则。对于相邻的两层,称高层为目标层,低层为因素层。
2、构造判断(成对比较)矩阵
在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Santy等人提出一致矩阵法,即不把所有因素放在一起比较,而是两两相互比较,对此时采用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,以提高准确度。
㈣ 层次分析法AW怎么算
矩阵A和特征向量W的乘积,也就是两矩阵相乘,用EXCEL算
㈤ 请问EXCEL如何计算层次分析法
层次分析法的基本步骤:
1、建立层次结构模型。在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。
2、构造成对比较阵。从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。
3、计算权向量并做一致性检验。对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。
4、计算组合权向量并做组合一致性检验。计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。
层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。
㈥ 层次分析法求权重怎么算
构造
反映了因素之间的关系,但准则层中的各准则在目标衡量中所占的比重并不一定相同,在决策者的心目中,它们各占有一定的比例。
在确定影响某因素的诸因子在该因素中所占的比重时,遇到的主要困难是这些比重常常不易定量化。此外,当影响某因素的因子较多时,直接考虑各因子对该因素有多大程度的影响时,常常会因考虑不周全、顾此失彼而使决策者提出与他实际认为的重要性程度不相一致的数据,甚至有可能提出一组隐含矛盾的数据。为看清这一点,可作如下假设:将一块重为1千克的石块砸成 小块,你可以精确称出它们的重量,设为 ,现在,请人估计这 小块的重量占总重量的比例(不能让他知道各小石块的重量),此人不仅很难给出精确的比值,而且完全可能因顾此失彼而提供彼此矛盾的数据。
设现在要比较 个因子 对某因素 的影响大小,怎样比较才能提供可信的数据呢?Saaty等人建议可以采取对因子进行两两比较建立
的办法。即每次取两个因子 和 ,以 表示 和 对 的影响大小之比,全部比较结果用矩阵 表示,称 为 之间的成对比较
(简称
)。容易看出,若 与 对 的影响之比为 ,则 与 对 的影响之比应为 。
定义1 若矩阵 满足
(i) ,(ii) ( )
则称之为正互反矩阵(易见 , )。
关于如何确定 的值,Saaty等建议引用数字1~9及其倒数作为标度。下表列出了1~9标度的含义:
标度 含 义
1
3
5
7
9
2,4,6,8
倒数 表示两个因素相比,具有相同重要性
表示两个因素相比,前者比后者稍重要
表示两个因素相比,前者比后者明显重要
表示两个因素相比,前者比后者强烈重要
表示两个因素相比,前者比后者极端重要
表示上述相邻判断的
若因素 与因素 的重要性之比为 ,那么因素 与因素 重要性之比为 。
从心理学观点来看,分级太多会超越人们的判断能力,既增加了作判断的难度,又容易因此而提供虚假数据。Saaty等人还用实验方法比较了在各种不同标度下人们判断结果的正确性,实验结果也表明,采用1~9标度最为合适。
最后,应该指出,一般地作 次两两判断是必要的。有人认为把所有元素都和某个元素比较,即只作 个比较就可以了。这种作法的弊病在于,任何一个判断的失误均可导致不合理的排序,而个别判断的失误对于难以定量的系统往往是难以避免的。进行 次比较可以提供更多的信息,通过各种不同角度的反复比较,从而导出一个合理的排序。
㈦ 层次分析方法
7.4.1 层次分析法基本原理
层次分析法 ( Analytical Hierarchy Process,简称 AHP 法) 是由美国着名运筹学家、匹兹堡大学 T.L.Saaty 教授于 20 世纪 70 年代中期提出的多目标多准则决策方法。它将人的主观判断定性分析进行量化,用数值来显示各替代方案的差异,供决策者参考。层次分析法原理简单,有数学依据,可以对非定量事物作定量分析,对人们的主观判断做客观描述,已在许多领域得到了广泛应用。
层次分析法是对所需要解决的问题,依据其内容和各因素间的相互关系,将因素按不同层次集合,把复杂的问题条理化、简单化,明确要解决的问题,利用数学手段确定每一层各因素相对重要性的权值,再把上一层信息传递到下一层,最后给出各因素相对重要性总的排序。根据总排序 ( 即权值) ,确定出各因素对目标的影响程度,以此分析确定影响建设工程质量和可能造成工程隐患的原因,实施有效的控制措施。
层次分析法的基本步骤:
1) 对问题进行分析;
2) 建立描述系统功能或特征的内部独立的递阶层次结构;
3) 同属一级的要素以上一级要素为准则进行两两比较,根据判断尺度确定其相对重要性,建立判断矩阵;
4) 对同一级元素的判断矩阵进行层次单排序;
5) 对其判断矩阵进行一致性检验;
6) 计算各要素的层次总排序。
图7.5 层次分析法基本模型
构造各层的判断矩阵,均是建立本层次对上一层次与某一因素有关的因素之间相对重要性程度的矩阵 ( 图7.5) ,矩阵的元素是本层次各个因素相互之间的重要性的量化数值,由人的主观判定给出。
层次分析法本质上是一种决策思维方法,按照 Saaty 提出的模型,其解决问题的基本过程如下:
( 1) 构造层次分析、层次结构模型
首先把决策的复杂系统分解为各种组成因素,将这些因素再按支配关系分解为次级组成因素,如此层层分解,形成一个有序的树状层次结构,称为递阶层次结构,这就建立了不同层次因素之间的相互关系。其中最上层为目标层,最下层为可供选择的决策方案层,中间各层为评价准则层 ( 表7.5) 。
表7.5 标准判断矩阵模型
(2)构造判断矩阵
一个因素被分解为若干个与之有关的下层因素,各下层因素对上层因素的作用大小不同,一般称为权重W,通过各因素的权重两两比较,填入表7.5中,就构成一个判断矩阵。例如图7.5分为3个层次,需要构造O,A1,A23个判断矩阵,分别为O矩阵(影响因素为A1、A2)、A1矩阵(影响因素为B1、B2、B3、B4、B5)、A2矩阵(影响因素为B2、B3、B4、B5)。各矩阵中的影响因素采用权重数值的方法表示对上层因素的重要程度(表7.6至表7.8)。其中权重按1~9标度选取数值表示不同的重要程度(如表7.9)。
表7.6中,aij表示对O来讲,Ai对Aj的相对重要性的数值。aij=Ai/Aj,通常取值为1,2,…,9及其倒数(也有其他的选值标度,见表7.9):1表示Ai与Aj同样重要;3表示Ai比Aj较重要;5表示Ai比Aj重要;7表示Ai比Aj重要得多;9表示Ai比Aj极为重要;1/3表示Aj比Ai较重要;1/5表示Aj比Ai重要,其余类推;2,4,6,8代表介于上述相邻判断中间的取值。任何判断矩阵都应满足aii=1与aij=1/aji(i,j=1,2,…,n)。
表7.6 O矩阵计算
表7.7 A1矩阵计算
表7.8 A2矩阵计算
表7.9 几种常见的正互反型标度
(3)逐层单排序,并进行一致性检验
层次单排序,首先解出判断矩阵O的最大特征值λmax,再利用Aω=λmaxω,解出λmax所对应的特征向量ω,ω经过标准化后,即为同一层次中相应元素对上一层中某因素相对重要性的排序权值。
λmax和ω的计算方法很多,在这里介绍一种简单的近似方法———和法:
第一步:A的元素按列归一化;
第二步:将A的元素按行相加;
第三步:所得到的行和向量归一化得排序向量ω;
第四步:按下列公式计算λmax值:
煤层顶板稳定性评价、预测理论与方法
式中:(Aω)i表示Aω的第i个元素。
得到λmax后,需要进行一致性检验,首先计算O的一致性指标CI,定义:
煤层顶板稳定性评价、预测理论与方法
式中:n———O的阶数,当CI=0,即λmax=n时,O具有完全一致性。CI愈大,O的一致性愈差。
将CI与平均随机一致性指标RI进行比较,令 ,称CR为随机一致性比率。当CR<0.10时,O具有满意的一致性,否则要对O重新调整,直到具有满意的一致性。这样计算出的λmax所对应的特征向量ω,经过标准化后,才可以作为层次单排序的权值。RI取值如表7.10所示。
表7.10 对于1~9阶判断矩阵的RI值
(4)总排序,取得决策结果
利用同一层次中所有层次单排序结果,计算针对上一层次而言本层次所有元素重要性的权值,这就是层次总排序。设上一层次所有元素A1,A2,…,Am的总排序已经完成,其权值分别为a1,a2,…,am,与aj对应的本层次元素B1,B2,..,Bn单排序的结果为b1j,b2j,…,bnj(当Bk与Aj无关时,bki=0), ajbij=1,总排序值仍为标准化向量(表7.11)。
表7.11 B层总排序权值
层次总排序一致性指标为:
式中:CIj为与aj对应的B层次中判断矩阵的一致性指标。
层次总排序随机一致性指标为:
式中:RIj———与aj对应的B层次中判断矩阵的随机一致性指标。
层次总排序随机一致性比率为:
当CR≤0.10时,认为总排序的计算结果具有满意一致性。
7.4.2 影响因素权重的确定
由于影响煤层顶板稳定性的因素众多而又复杂,而且绝大多数影响因素只是对其稳定性的定性评价,给进一步分析造成了困难。不管是传统的稳定系数法、数值分析法,还是新近采用的模糊数学、相似模拟等方法,都需要大量影响稳定因素的定量指标。在顶板稳定性评价中,影响因素指标由定性化到半定量化、定量化的分析,也是这个领域发展的必然趋势。本书以对兖州煤田顶板稳定性的层次分析法进行评价为例,说明其使用方法与步骤。通过对兖州煤田主采煤层顶板稳定性各影响因素的分析,结合层次分析法的独特性及其适宜性,各因素的综合影响结果进分析研究是比较合理的方法,以下就严格按照层次分析法的研究步骤,对兖州煤田主采煤层顶板稳定性的影响因素进行讨论。
(1)建立问题的递阶层次结构
按顶板稳定性影响因素之间的关系,构成图7.6所示的递阶层次结构。
图7.6 顶板稳定性影响因素的递阶层次模型
目标层A:为最上一层主采煤层顶板稳定性。
基本层B:分顶板沉积条件B1、顶板构造情况B2、顶板岩石力学性质B3和其他因素B4四大类。
基本层中每一个因素又分为不同的分支层。
顶板沉积条件:分为岩层组合方式C1、沉积岩性统计C2、层理发育情况C3;
顶板构造情况:分为区域构造展布C4、小构造统计特征C5、结构面发育情况C6;
顶板岩石力学性质:分为结构面的影响C6、岩石力学指标C7、岩石物理性质C8;
其他因素:包括地震的影响C9、开采技术条件C10。
(2)构造两两比较矩阵
基本层因素,运用1~9标度(表7.12),两两比较得到判断矩阵(表7.13);对于基本层的分支层,用相同方法构造出两两比较判断矩阵(表7.14至表7.17)。
表7.12 比较标度的取值方法
表7.13 A矩阵计算
表7.14 B1矩阵计算
表7.15 B2矩阵计算
表7.16 B3矩阵计算
表7.17 B4矩阵计算
(3)权值分配
根据判断矩阵得出各因素的权值大小,计算并进行一致性和随机性检验,最后可得各类、各项影响因素指标的两级权重分配(表7.18)。
表7.18 各类、各项不同影响因素指标的权重分配
续表
采用AHP法确定煤层顶板各项影响因素指标的权值,合理地反映了各项因素对顶板稳定性的影响程度。权值的合理确定,为准确分析研究区的顶板稳定性打下了良好的基础。
7.4.3 层次分析法在煤层顶板稳定性评价中的应用———以兖州煤田为例
(1)单因素分区
首先对影响煤层顶板稳定性的3个最基本因素进行分析,根据各分支因素的权值大小,得到3个基本因素分区图:沉积分区图(图7.7)、构造分区图(图7.8)和岩石力学性质分区图(图7.9)。
1)根据沉积方面影响因素,按照权重大小对研究区顶板进行沉积分区(图7.7),共分出4种基本类型:厚层砂岩沉积区、砂-粉砂岩沉积区、粉砂-泥岩沉积区、泥岩沉积区。
·厚层砂岩沉积区,主要分布在煤田北部和南部,老顶砂岩发育较厚,以中、粗砂岩为主,大部分为硅质胶结,少量泥质胶结。顶板岩层以煤层-老顶组合为主,直接顶不发育或以薄层覆于煤层之上。约占井田面积的30%,工程性质属沉积稳定区。
·砂-粉砂岩沉积区,主要分布在煤田中部和南部,以细砂岩、粉砂岩沉积为主,分层厚度中等。顶板岩层组合以细砂岩和粉砂岩互层为特征,约占井田面积的25%。工程性质属沉积较稳定区。
·粉砂-泥岩沉积区,主要分布在煤田中部,与砂-粉砂岩沉积间隔分布。岩性以粉砂岩及泥岩为主,顶板岩层组合以泥岩-粉砂岩、泥质粉砂岩和粉砂质泥岩互层等,分层厚度较薄,约占井田面积的30%,工程性质属沉积较不稳定区。
·泥岩沉积区,在井田全区均有分布,分块面积不大,呈零星分散状展布。以泥岩、粘土岩、粉砂质泥岩为主,夹有煤线及软弱层,且分层厚度一般较薄。约占井田面积的15%。工程性质属沉积不稳定区。
2)依据研究区断层及褶皱的展布情况,按已采区揭露的顶板小断层分布特点,得出煤层顶板构造发育分区图(图7.8)。将顶板类型分为4种:构造极发育区、构造发育区、构造中等发育区和构造不发育区。
图7.7 沉积类型分区图
·构造不发育区,区内小构造数量有限,断续展布,主要集中分布在井田北部及西部地区,分布在远离构造密集的地带。约占全区面积的20%左右。
·构造中等发育区,小构造数量不多,连通性不良,独个产出,这种类型全区基本均匀分布,属较稳定顶板,与较不稳定顶板成过渡带分布。约占全区面积的30%左右。
·构造发育区,多指大构造附近区域,许多伴生小构造发育,相互贯穿连通,破坏岩体的完整性,岩石力学性质降低,是顶板冒落和破坏的主要因素,约占全区的20%。
·构造极发育区,指大构造和小构造极发育的地区,彼此相互交叉,组合成更为复杂的型式。小断层密集成带,顶板岩层破碎,节理裂隙较多。一般大构造出现的地方往往小构造也很密集,因为在区域构造力的作用下,大构造逐渐形成过程中,小构造伴生出现,使岩体的不稳定程度和范围都相应增加。这种类型约占全区面积的30%。
图7.8 构造发育分区图
3)根据顶板岩层岩石力学性质特点,以及各影响因素分析,对煤层顶板按岩石力学性质进行分区,共分为4种类型:极高强度区、高强度区、中等强度区和低强度区(图7.9)。
·极高强度区,顶板岩层的抗压强度大于56MPa,仅分布在井田中部和南部,面积较小。约占井田面积的5%。
·高强度区,顶板岩层的抗压强度为52~56MPa,井田北部、西部和南部大部分地区属于此类。约占井田面积的60%。
图7.9 岩石力学性质分区图
·中等强度区,顶板岩层的抗压强度为48~52MPa,主要分布在井田最北部、中西部以及东南部地区。约占井田面积的20%。
·低强度区,顶板岩层的抗压强度<48MPa,零星分布在全井田范围内,主要受沉积和构造等多方面的影响,岩石力学性质低。约占井田面积的15%。
(2)多因素综合分区
利用层次分析法确定影响因素权值后,对研究区进行综合分区。依据沉积条件、构造发育特点和岩石力学特征,按照基本因素权重大小进行复合叠加,把兖州煤田主采煤层顶板基本类型分为4种:顶板非常稳定区、顶板稳定区、顶板中等稳定区和顶板不稳定区(图7.10)。
图7.10 兖州煤田主采煤层顶板稳定性综合分区图
顶板非常稳定区,主要位于井田中北部,从沉积、构造、岩石力学等方面分析,均属于稳定情况,岩性主要以中粗砂岩为主,构造极少发育,岩石力学强度高,抗压强度>56MPa。综合分析,顶板工程性质好,约占井田面积的20%。
顶板稳定区,主要位于井田的西部、西南以及东北部,岩性主要以细砂岩、粉砂岩及薄层互层为特征,含少量泥岩,构造发育中等,局部小构造密集,岩石力学性质处于高强度区与中等强度区的过渡地段,岩体抗压强度介于48~56MPa之间。综合分析,顶板工程性质较好,约占井田面积的40%。
顶板中等稳定区,主要位于井田西南部,中部及东南部地区,南北向条带状分布,岩性以粉砂岩、泥岩、粘土岩为主,构造属极发育区、发育区或中等发育区,局部小构造密集发育,主要为大型断裂的两侧或邻近地区,岩石力学性质处于中等强度。综合分析,顶板工程性质较差,约占井田面积的30%。
顶板不稳定区,主要位于井田北部及东部小块区域,岩性以泥岩、泥质粉砂岩和粉砂岩为主,构造极发育,岩层裂隙较多,岩石力学性质较差,岩体抗压强度<48MPa。综合分析,顶板工程性质很差,约占井田面积的10%。
中等稳定区和不稳定区煤层顶板属于灾害性顶板,在开采过程中需要及时进行管理和维护,防止出现顶板事故。非常稳定区和稳定区顶板属于安全性顶板,在开采过程中必须按照技术要求及时进行放顶工作。
㈧ 请教,层次分析法确定指标权重的计算方法
需要构造判断矩阵。
层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。
(8)层次分析法的计算方法扩展阅读:
层次分析法注意事项
在运用层次分析法时,如果所选的要素不合理,其含义混淆不清,或要素间的关系不正确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。为保证递阶层次结构的合理性,需把握以下原则:
1、分解简化问题时把握主要因素,不漏不多;
2、注意相比较元素之间的强度关系,相差太悬殊的要素不能在同一层次比较。
㈨ 如何利用spss进行层次分析法计算权重希望有具体步骤!
在线版SPSS(SPSSAU)现在可以做AHP层次分析,操作挺方便的,不会还有步骤说明,可以试下。
㈩ 层次分析法判断矩阵的权重计算
这是求和法计算的
只需把
权重
1的
公式
括号里的每一项的分子(5个分子)改为矩阵里的第二行的
5个数字
就行啦
同理
权重3
4
5就改为第三
四
五行]