㈠ 乘法法则都有哪些
乘法的计算法则:
1、多位数乘法法则整数乘法低位起,几位数乘法几次积。
个位数乘得若干一,积的末位对个位。
十位数乘得若干十,积的末位对十位。
百位数乘得若干百,积的末位对百位计算准确对好位,几次乘积加一起。
2、因数末尾有0的乘法法则因数末尾若有0,写在后面先不乘,乘完积补上0,有几个0写几个0。
乘法的计算法则:
数位对齐,从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐。
凡是被乘数的各位数遇到7、8、9时,其方法为:
是9:本位减补数-次,下位加补数一次。
被乘数是8:本位减补数一次,下位加补数二次。
是7:本位减补数一次,下位加补数三次。
例如:987x879=867573(879的补数是121)算序:被乘数个位7的本位减121,下位加363得98-6153。被乘数-+位8的本位减121,下位加242得9-76473。被乘数百位9的本位减121,下位加121得867573(积)。
㈡ 小学的乘除法公式是什么
乘法:
因数x因数=积
积÷一个因数=另一个因数
除法:
被除数÷除数=商
被除数÷商=除数
商×除数=被除数
乘法的交换律:两个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。a×b=b×a
乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。a×b×c=a×(b×c)
乘法分配律:两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。这叫做乘法分配律。(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c乘法的其他
拓展资料
小学数学是通过教材,教小朋友们关于数的认识,四则运算,图形和长度的计算公式,单位转换一系列的知识,为初中和日常生活的计算打下良好的数学基础。荷兰教育家弗赖登诺尔认为:“数学来源于现实,也必须扎根于现实,并且应用于现实。”[1]的确,现代数学要求我们用数学的眼光来观察世界,用数学的语言来阐述世界。从小学生数学学习心理来看,学生的学习过程不是被动的吸收过程,而是一个以已有知识和经验为基础的重新建构的过程,因此,做中学,玩中学,将抽象的数学关系转化为学生生活中熟悉的事例,将使儿童学得更主动。从我们的教育目标来看,我们在传授知识的同时,更应注重培养学生的观察、分析和应用等综合能力。
(资料来源:网络:小学数学)
㈢ 乘除法运算法则
乘除法运算法则
一、整数乘法法则:
1、从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐;
2、然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。)
二、小数乘法法则:
1、按整数乘法的法则算出积;
2、再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。 3)得数的小数部分末尾有0,一般要把0去掉,进行化简。
三、分数乘法法则:
把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,然后再约分。
四、整数的除法法则
1、从被除数的高位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;
2、除到被除数的哪一位,就在那一位上面写上商; 3)每次除后余下的数必须比除数小。
五、除数是整数的小数除法法则:
1、按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;
2、如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
六、除数是小数的小数除法法则:
计算除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”补足);然后按照除数是整数的除法法则进行计算。
1、先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;
2、然后按照除数是整数的小数除法来除。
六、分数的除法法则:
1、用被除数的分子与除数的分母相乘作为分子;
2、用被除数的分母与除数的分子相乘作为分母。(即被除数不变,乘除数的倒数)
(3)数学乘法的计算方法扩展阅读:
乘法运算定律
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1、乘法交换律:ab=ba ,注:字母与字母相乘,乘号不用写,或者可以写成·。
2、乘法结合律:(ab)c=a(bc) ,
3、乘法分配律:(a+b)c=ac+bc 。
㈣ 乘法算式怎么算
乘法的计算法则:
(1)数位对齐,从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐;
(2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0)
1、首位相同,两尾数和等于10的两位数相乘方法: 十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
2、首位相同,尾数和不等于10的两位数相乘方法:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
3、被乘数首尾相同,乘数首尾和是10的两位数相乘方法:乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有 十位用0补。
4、被乘数首尾和是10,乘数首尾相同的两位数相乘方法:与帮助6的方法相似。两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得 数作为后积,没有十位补0。
㈤ 乘法的计算方法有那些
1、乘法分配律公式:(a+b)×c=a×c+b×c
2、乘法结合律公式:(a×b)×c=a×(b×c)
3、乘法交换律公式:a×b=b×a
4、加法结合律公式:(a+b)+c=a+(b+c)
1、乘法是指将相同的数加起来的快捷方式。其运算结果称为积。从哲学角度解析,乘法是加法的量变导致的质变结果。
2、整数的乘法运算满足: 交换律, 结合律, 分配律,消去律。随着数学的发展, 运算的对象从整数发展为更一般群。群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是 哈密尔顿发现的 四元数群。 但是结合律仍然满足。
3、在群上再装备另一种乘法, 则发展成为“环”, 两种乘法中的一种可以视为传统意义上的加法,因此要求满足分配律和交换律;但是另一种“乘法”却不要求交换律。在环里面,我们不再要求消去律成立。 如果这个环有消去律,就叫做 整环。但是对于环来说, 不一定有“ 除法”的概念。 如果环有除法的话,就叫做“域”。域是最接近我们平时所说的有理数集合的东西。 但是它包含了更多信息。
㈥ 乘法的计算公式是什么
乘数X乘数(被乘数)=积。乘法是指将相同的数加起来的快捷方式。
乘法交换律是带腊友乘法运算的一种运算定律。两个因数相乘,交换因数的位置,积不变,叫做乘法交换律。多数相乘,任意两个数交换位置,其积不变。
乘法遵局如循交换律,所以乘数与被乘数没有区别。但是,一般应是被乘数×乘数=积或者因数×因数=积。
相关信息:
乘法运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的蠢槐乘法由这个基本定义的系统泛化来定义。
乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。