导航:首页 > 安装方法 > 组织多普勒测量方法图

组织多普勒测量方法图

发布时间:2022-06-10 04:39:38

❶ 多普勒实验注意事项

实验一 验证多普勒效应并由测量数据计算声速

让小车以不同速度通过光电门,仪器自动记录小车通过光电门时的平均运动速度及与之对应的平均接收频率。由仪器显示的f-V关系图可看出,若测量点成直线,符合(2)式描述的规律,即直观验证了多普勒效应。用作图法或线性回归法计算f-V直线的斜率k,由k计算声速u并与声速的理论值比较,计算其百分误差。

图2 多普勒效应验证实验及测量小车水平运动安装示意图

一.仪器安装

如图2所示。所有需固定的附件均安装在导轨上,并在两侧的安装槽上固定。调节水平超声传感发生器的高度,使其与超声接收器(已固定在小车上)在同一个平面上,再调整红外接收传感器高度和方向,使其与红外发射器(已固定在小车上)在同一轴线上。将组件电缆接入实验仪的对应接口上。安装完毕后,让电磁铁吸住小车,给小车上的传感器充电,第一次充电时间约6~8秒,充满后(仪器面板充电灯变绿色)可以持续使用4~5分钟。在充电时要注意,必须让小车上的充电板和电磁铁上的充电针接触良好。

【注意事项】

① 安装时要尽量保证红外接收器、小车上的红外发射器和超声接收器、超声发射器三者之间在同一轴线上,以保证信号传输良好;

② 安装时不可挤压连接电缆,以免导线折断;

③ 小车不使用时应立放,避免小车滚轮沾上污物,影响实验进行。

二.测量准备

1.实验仪开机后,首先要求输入室温。因为计算物体运动速度时要代入声速,而声速是温度的函数。利用 t u 将室温T值调到实际值,按“确认”。

2.第二个界面要求对超声发生器的驱动频率进行调谐。在超声应用中,需要将发生器与接收器的频率匹配,并将驱动频率调到谐振频率f0,这样接收器获得的信号幅度才最强,才能有效的发射与接收超声波。一般f0在40KHz左右。调谐好后,面板上的锁定灯将熄灭。

3.电流调至最大值后,按“确认”。本仪器所有操作,均要按“确认”键后,数据才被写入仪器。

【注意事项】

①调谐及实验进行时,须保证超声发生器和接收器之间无任何阻挡物;

②为保证使用安全,三芯电源线须可靠接地。

三.测量步骤

1.在液晶显示屏上,选中“多普勒效应验证实验”,并按“确认”;

2.利用 u 键修改测试总次数(选择范围5~10,一般选5次),按 ▼ ,选中“开始测试”;

3.准备好后,按“确认”,电磁铁释放,测试开始进行,仪器自动记录小车通过光电门时的平均运动速度及与之对应的平均接收频率;

改变小车的运动速度,可用以下两种方式:

a.砝码牵引:利用砝码的不同组合实现;

b.用手推动:沿水平方向对小车施以变力,使其通过光电门。

为便于操作,一般由小到大改变小车的运动速度。

4.每一次测试完成,都有“存入”或“重测”的提示,可根据实际情况选择,“确认”后回到测试状态,并显示测试总次数及已完成的测试次数;

5.改变砝码质量(砝码牵引方式),并退回小车让磁铁吸住,按“开始”,进行第二次测试;

6.完成设定的测量次数后,仪器自动存储数据,并显示f-V关系图及测量数据。

【注意事项】

小车速度不可太快,以防小车脱轨跌落损坏。

四.数据记录与处理

由f-V关系图可看出,若测量点成直线,符合(2)式描述的规律,即直观验证了多普勒效应。用 u 键选中“数据”,q 键翻阅数据并记入表1中,用作图法或线性回归法计算f-V关系直线的斜率k。公式(4)为线性回归法计算k值的公式,其中测量次数i=5 ~ n,n≤10。
由k计算声速u = f0/k,并与声速的理论值比较,声速理论值由u0 = 331(1+t/273)1/2 (米/秒)计算,t表示室温。测量数据的记录是仪器自动进行的。在测量完成后,只需在出现的显示界面上,用 u 键选中“数据”,q 键翻阅数据并记入表1中,然后按照上述公式计算出相关结果并填入表格。

❷ 彩色多普勒超声检查是什么,有什么作用

彩色多普勒超声常规检查是超声医学领域的基础检查,是应用二维超声和彩色多普勒超声对器官和组织进行常规检查。

通过常规超声明确诊断大多数疾病如脂肪肝,肝癌,胆囊结石,肾结石,各类先天性心脏病,各类后天性心脏病,动脉粥样硬化等疾病。以及相对应的特殊超声检查指的是超声造影,弹性成像,三维超声,经食道超声,介入性超声等超声医学新技术。

(2)组织多普勒测量方法图扩展阅读:

注意事项:

1、腹部超声检查应尽量在上午空腹进行,包括肝脏,胆囊,胰腺,胆管等,检查前晚九点后禁食(需空腹8小时以上),十二点后禁饮水。

2、腹部超声检查应安排在内镜(胃肠镜),钡餐及胆道造影检查之前。心脏超声应在24小时动态心电图、动态血压之前检查。急诊超声检查(如外伤,怀疑胆道结石嵌顿等)不受上述条件制约。

3、膀胱,前列腺,精囊,输尿管结石,妇科及早孕超声检查(13周前,即怀孕3个月内)应憋尿后进行。用户应在检查前1~2小时,饮水500~1000毫升。

4、经直肠检查前列腺及精囊前应排便,适度憋尿。经阴道超声检查前应排空小便,宜经期后检查,以避免感染。

❸ 多普勒原理的简介

由多普勒效应所形成的频率变化叫做多普勒频移,它与相对速度V成正比,与振动的频率成反比。
脉冲多普勒雷达的工作原理可表述如下:当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差,称为多普勒频率。根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。同时用频率过滤方法检测目标的多普勒频率谱线,滤除干扰杂波的谱线,可使雷达从强杂波中分辨出目标信号。所以脉冲多普勒雷达比普通雷达的抗杂波干扰能力强,能探测出隐蔽在背景中的活动目标。
脉冲多普勒雷达于20世纪60年代研制成功并投入使用。20世纪70年代以来,随着大规模集成电路和数字处理技术的发展,脉冲多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备。装有脉冲多普勒雷达的预警飞机,已成为对付低空轰炸机和巡航导弹的有效军事装备。此外,这种雷达还用于气象观测,对气象回波进行多普勒速度分辨,可获得不同高度大气层中各种空气湍流运动的分布情况。
机载火控系统用的主要是脉冲多普勒雷达。如美国战机装备的 A P G-68雷达,代表了机载脉冲多普勒火控雷达的先进水平。它有18种工作方式,可对空中、地面和海上目标边搜索边跟踪,抗干扰性能好,当飞机在低空飞行时,还可引导飞机跟踪地形起伏,以避免与地面相撞。这种雷达体积小,重量轻,可靠性高。
机载脉冲多普勒雷达主要由天线、发射机、接收机、伺服系统、数字信号处理机、雷达数据处理机和数据总线等组成。机载脉冲多普勒雷达通常采用相干体制,有着极高的载频稳定度和频谱纯度以及极低的天线旁瓣,并采取先进的数字信号处理技术。脉冲多普勒雷达通常采用较高以及多种的重复频率和多种发射信号形式,以在数据处理机中利用代数方法,并可应用滤波理论在数据处理机中对目标坐标数据作进一步滤波或预测。
脉冲多普勒雷达具有下列特点:①采用可编程序信号处理机,以增大雷达信号的处理容量、速度和灵活性,提高设备的复用性,从而使雷达能在跟踪的同时进行搜索并能改变或增加雷达的工作状态,使雷达具有对付各种干扰的能力和超视距的识别目标的能力;②采用可编程序栅控行波管,使雷达能工作在不同脉冲重复频率,具有自适应波形的能力,能根据不同的战术状态选用低、中或高三种脉冲重复频率的波形,并可获得各种工作状态的最佳性能;③采用多普勒波束锐化技术获得高分辨率,在空对地应用中可提供高分辨率的地图测绘和高分辨率的局部放大测绘,在空对空敌情判断状态可分辨出密集编队的群目标。
多普勒超声诊断仪(Doppler Ultrasound, D超)
根据多普勒效应制成的超声诊断仪称为多普勒超声诊断仪(D型超声诊断仪)。它在医学临床诊断学中用于心脏、血管、血流和胎儿心率等诊断。
超声多普勒仪种类繁多,根据显示方式的不同,可把它大致分为两类:频谱多普勒仪和超声多普勒显像仪。
频谱多普勒根据产生信号的方式不同有分为连续性频谱多普勒和脉冲型多普勒。
超声多普勒显像仪包括超声多普勒血管显像仪和彩色多普勒血流显像仪。
在过去的几十年中,超声频谱多普勒探测血流的研究工作已取得很大的成就,彩色多普勒的出现,使之更趋完美。频谱多普勒对血流的探测不是直观的,通过频谱的变化进而表达血流的改变,对血流的定量测定来说,频谱多普勒是必备的工具;彩色多普勒血流显像对血流的显示是直观的,它已成为定性诊断的最可*的方法。
临床应用范围
1.连续超声多普勒诊断仪
连续超声多普勒诊断仪通过发射与接收连续多普勒信号,来获得运动目标的信息。这类仪器结构简单,价格低廉,可用来观测心壁、瓣膜、胎体的运动状态这类仪器的测量也存在很的局限性。例如不能判断物体的运动方向,不能探测血流状态。由于没有深度分辨力,它也不能探测运动物体的深度,因此目前除用以胎儿的检测外,已很少在临床上使用。
2.连续超声多普勒血流计
利用连续超声多普勒血流计可以检测血流速度的大小与方向,尤其是在测量高速血流时连续式超声多普勒血流计有其独特的优势。此类仪器仍不能分辨探头和运动目标间的距离,测量结果受声束和运动方向夹角的影响较大,无法了解异常血流的产生部位。
3.脉冲超声波多普勒血流计
脉冲超声波多普勒血流计发射的是超声脉冲同时有延迟电路来控制接收器,使得这种仪器具有距离选通能力。如果采用不同的延迟时间,就可以得到沿声束方向上不同深度的血流速度,从而构成血流剖面图。目前脉冲多普勒血流计与B超显像仪进行组合,用前者检查血流状态,用、后者探测解剖结构,所以能在诊断瓣口与血管狭窄、瓣膜关闭不全及先天性间隔缺损所致的分流方面取得良好的效果。这类仪器也有它的缺点,它所测血流速度的大小即多普勒频移大小受脉冲重复频率的限制。当其频移值超过尼奎斯特频率时,速度高的血流尖峰部分不能正常显示,出现频率倒错的显象。此外,由于采样体积范围很小,需要在断面上反复移动,检测时间较长。
4.彩色多普勒血流显像仪
彩色多普勒血流显像计是通过对散射回声多普勒信息作相位检测并经自相关处理,彩色灰阶编码,把平均血流速度分类以彩色显示,它与B型图像和M型超声心动图相结合,可提供心脏和大血管内血流的时间和空间信息。可同时显示心脏某一断面上全部血流束的分布及数目,腔室形态、大小;表现血流途径及方向;辨别层流、湍流或涡流;测量血流束的面积、轮廓长度和宽度;清楚暗示血管结构异常与血液动力学异常的关系。临床用于心脏瓣膜病,先天性心脏病、心肌病、心脏肿瘤的无创伤诊断,彩色多普勒血流显像直观、形象、快速检测,诊断灵敏和准确率很高。当然,彩色多普勒血流显像也有其局限性,它更多地作为定性诊断的方法,而对血流动力学的定量分析还须借助频谱多普勒1.脉冲式多普勒超声仪的工作原理
脉冲式多普勒超声仪发射的是脉冲波,每秒发射超声脉冲的个数称脉冲重复频率(PRF),一般为5~10kHz。目前常用的距离选通式脉冲多普勒超声仪由换能器、高频脉冲发生器、主控振荡器、分频器、取样脉冲发生器、接收放大器、鉴相器、低通滤波器和f-v变换器等部件组成。换能器(探头)采用发、收分开型,发射压电晶体受持续时间极短的高频脉冲激励,发射超声脉冲。接收压电晶体收到由红细胞后散射的高频回波,经放大后输入鉴相器进行解调,低通滤波器滤去高载波,让不同深度的多普勒回波信号通过。调节取样脉冲与高频发射脉冲之间的延迟时间,就可以对来自某一深度的回波信号进行选通取样,从而检测到那一深度血管中的血流。按照取样定理,取样脉冲的重复频率必须大于最大多普勒频移的2倍。取样脉冲与发射脉冲之间的延迟时间,可用简单的单稳态延迟电路产生。标明选通距离的度盘直接装在调节延迟时间的电位器的轴上,延迟时间每改变13μs,距离度盘上的距离标度正好改变1cm。经取样保持电路输出的信号中含有控制脉冲信号成分,经过低通滤波器滤除后,送f-v变换成电压输出。
2.脉冲波多普勒和连续波多普勒超声的特点与限度
脉冲波多普勒是由同一个(或一组)晶片发射并接收超声波的。它用较少的时间发射,而用更多的时间接收。由于采用深度选通(或距离选通)技术,可进行定点血流测定,因而具有很高的距离分辨力,也可对喧点血流的性质做出准确的分析。由于脉冲波多普勒的最大显示频率受到脉冲重复频率的限制,在检测高速血流时容易出现混叠。这对像二尖瓣狭窄、主动脉瓣狭窄等这类疾病的检查十分不利。

如何利用多普勒效应测量声速和运动物体速度

交通警向行进中的车辆发射频率已知的超声波同时测量反射波的频率,根据反射波的频率变化的多少就能知道车辆的速度。

观察者 (Observer) 和发射源 (Source) 的频率关系为(此式不适用于光波,光波的多普勒效应见下文):

(4)组织多普勒测量方法图扩展阅读

多普勒效应就是指当声源与听者彼此相对运动时,会感觉到某一频率确定的声音的音调将发生变化。

1842年奥地利物理学家克里斯汀·约翰·多普勒曾发表过一篇论文,其中描述了他认为肯定存在但还需要进一步论证的现象,这就是多普勒效应。

多普勒提出,如果假设声音的速度非常之慢,那么运动中的发声体就会发生这样的情况:当发声体接近一个观测点时,人们发现声波被声源(即发声体)自身的速度“挤压在了一起” ;同样,当发声体向远处后退时,声波就会发散开来。

即当发声体向前进时,对声波的“挤压”在观测点附近形成了一些波长较短、频率较高的声波;而当发声体后退时,则形成了一些相对频率较低的声波。

在多普勒的论文发表后的第三年,人们对他的理论进行了实验。他们用一列火车载着15个小号手接近、经过、然后离开一个火车站。这些小号手们在火车上持续地吹着一个相同的长音。结果事实证明多普勒的理论是正确的:

火车上的人听到的是一个持续的长音,火车站上的人听到的是比这个长音音调更高的声音;而当火车驶离火车站时,车站上的人听到的是比真实声音音调更低的声音。

参考资料来源:网络-多普勒效应

❺ 什么是多普勒血流图

彩色多普勒又称二维多普勒,它把所得的血流信息经相位检测、自相关处理、彩色灰阶编码,把平均血流速度资料以彩色显示,并将其组合,叠加显示在B型灰阶图像上。它较直观地显示血流,对血流的性质和流速在心脏、血管内的分布较脉冲多普勒更快、更直观地显示。对左向右分流血流以及瓣口返流血流的显示有独到的优越性。

❻ 关于组织多普勒速度图,下列叙述正确的是

A、“彩超”测量血液的速度原理是利用了多普勒效应.故A正确;
B、C、振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的现象叫做多普勒效应,可能是波源在动,也可能是观察者在动.故BC错误;
D、在多普勒效应中波源频率没有发生了变化,是振源与观察者之间存在着相对运动,故D错误.
故选:D

❼ 多普勒组织成像的脉冲波多普勒技术常用于检测哪些结构

基本上是准确的。多普勒胃肠检查和B型结合,组成双功超声诊断系统。它利用同一探头,既能用B型显示脏器的解剖结构,又能用脉冲多普勒测量某一深度的血流信息。最早是采用同一个机械探头,在B型显示时,换能器作扇形扫描;作多普勒检测时,换能器停在扇面某一指定方向上,并在扇面的指定采样容积的深度位置检测血流信息。但脉冲多普勒检测的同时不能进行B型扫描,只能由冻结的B型图像来指示判断采样容积的位置。后来应用相控阵探头,才实现了脉冲多普勒和B型同时实时显示。目前,在线阵和凸阵探头中也可采用这种技术。胃肠检查最好是无痛胃肠镜检查(奥林巴斯无痛胃肠镜)或者OMOM胶囊内镜检查。这两种检查的准确率是最高的,可以更清晰的看到胃肠状况。OMOM胶囊内镜价格会相对比较昂贵,3000元以上。

❽ 多普勒有哪几种都有什么特点

在单色的情况下,我们的眼睛感知的颜色可以解释为光波振动的频率,或者解释为,在1秒钟内电磁场所交替为变化的次数。在可见区域,这种效率越低,就越趋向于红色,频率越高的,就趋向于蓝色——紫色。比如,由氦——氖激光所产生的鲜红色对应的频率为4.74×1014赫兹,而汞灯的紫色对应的频率则在7×1014赫兹以上。这个原则同样适用于声波:声音的高低的感觉对应于声音对耳朵的鼓膜施加压力的振动频率(高频声音尖厉,低频声音低沉)。

如果波源是固定不动的,不动的接收者所接收的波的振动与波源发射的波的节奏相同:发射频率等于接收频率。如果波源相对于接收者来说是移动的,比如相互远离,那么情况就不一样了。相对于接收者来说,波源产生的两个波峰之间的距离拉长了,因此两上波峰到达接收者所用的时间也变长了。那么到达接收者时频率降低,所感知的颜色向红色移动(如果波源向接收者靠近,情况则相反)。为了让读者对这个效应的影响大小有个概念,在图4中显示了多普勒频移,近似给出了一个正在远离的光源在相对速度变化时所接收到的频率。例如,在上面提到的氦——氖激光的红色谱线,当波源的速度相当于光速的一半时(参见图中所画的虚线),接收到的频率由4.74×1014赫兹下降到4.74×1014赫兹,这个数值大幅度地降移到红外线的频段。

一、声波的多普勒效应

在日常生活中,我们都会有这种经验:当一列鸣着汽笛的火车经过某观察者时,他会发现火车汽笛的声调由高

变低. 为什么会发生这种现象呢?这是因为声调的高低是由声波振动频率的不同决定的,如果频率高,声调听起来

就高;反之声调听起来就低.这种现象称为多普勒效应,它是用发现者克里斯蒂安·多普勒(Christian

Doppler,1803-1853)的名字命名的,多普勒是奥地利物理学家和数学家.他于1842年首先发现了这种效应.为了理

解这一现象,就需要考察火车以恒定速度驶近时,汽笛发出的声波在传播时的规律.其结果是声波的波长缩短,好象

波被压缩了.因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,

当火车驶向远方时,声波的波长变大,好象波被拉伸了. 因此,声音听起来就显得低沉.定量分析得到f1=(u+v0)

/(u-vs)f ,其中vs为波源相对于介质的速度,v0为观察者相对于介质的速度,f表示波源的固有频率,u表示波

在静止介质中的传播速度. 当观察者朝波源运动时,v0取正号;当观察者背离波源(即顺着波源)运动时,v0取负

号. 当波源朝观察者运动时vs前面取负号;前波源背离观察者运动时vs取正号. 从上式易知,当观察者与声源相互

靠近时,f1>f ;当观察者与声源相互远离时。f1<f

二、光波的多普勒效应

具有波动性的光也会出现这种效应,它又被称为多普勒-斐索效应. 因为法国物理学家斐索(1819-1896)于

1848年独立地对来自恒星的波长偏移做了解释,指出了利用这种效应测量恒星相对速度的办法.光波与声波的不同之

处在于,光波频率的变化使人感觉到是颜色的变化. 如果恒星远离我们而去,则光的谱线就向红光方向移动,称为

红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移.

三、光的多普勒效应的应用

20世纪20年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,首先发现了光谱的红移,认识到了

旋涡星云正快速远离地球而去.1929年哈勃根据光普红移总结出着名的哈勃定律:星系的远离速度v与距地球的距离

r成正比,即v=Hr,H为哈勃常数.根据哈勃定律和后来更多天体红移的测定,人们相信宇宙在长时间内一直在膨胀,

物质密度一直在变小. 由此推知,宇宙结构在某一时刻前是不存在的,它只能是演化的产物. 因而1948年伽莫夫(

G. Gamow)和他的同事们提出大爆炸宇宙模型. 20世纪60年代以来,大爆炸宇宙模型逐渐被广泛接受,以致被天文

学家称为宇宙的"标准模型" .

多普勒-斐索效应使人们对距地球任意远的天体的运动的研究成为可能,这只要分析一下接收到的光的频谱就行

了. 1868年,英国天文学家W. 哈金斯用这种办法测量了天狼星的视向速度(即物体远离我们而去的速度),得出了

46 km/s的速度值
参考资料:http://www.ephyst.com/wlsl/files/dplxy.htm

❾ 多普勒效应的应用分类

声波的多普勒效应也可以用于医学的诊断,也就是我们平常说的彩超。彩超简单的说就是高清晰度的黑白B超再加上彩色多普勒,首先说说超声频移诊断法,即D超,此法应用多普勒效应原理,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率有所改变,此种频率的变化称之为频移,D超包括脉冲多普勒、连续多普勒和彩色多普勒血流图像。彩色多普勒超声一般是用自相关技术进行多普勒信号处理,把自相关技术获得的血流信号经彩色编码后实时地叠加在二维图像上,即形成彩色多普勒超声血流图像。由此可见,彩色多普勒超声(即彩超)既具有二维超声结构图像的优点,又同时提供了血流动力学的丰富信息,实际应用受到了广泛的重视和欢迎,在临床上被誉为“非创伤性血管造影”。
为了检查心脏、血管的运动状态,了解血液流动速度,可以通过发射超声来实现。由于血管内的血液是流动的物体,所以超声波振源与相对运动的血液间就产生多普勒效应。血管向着超声源运动时,反射波的波长被压缩,因而频率增加。血管离开声源运动时,反射波的波长变长,因而在单位时向里频率减少。反射波频率增加或减少的量,是与血液流运速度成正比,从而就可根据超声波的频移量,测定血液的流速。
我们知道血管内血流速度和血液流量,它对心血管的疾病诊断具有一定的价值,特别是对循环过程中供氧情况,闭锁能力,有无紊流,血管粥样硬化等均能提供有价值的诊断信息。
超声多普勒法诊断心脏过程是这样的:超声振荡器产生一种高频的等幅超声信号,激励发射换能器探头,产生连续不断的超声波,向人体心血管器官发射,便产生多普勒效应,当超声波束遇到运动的脏器和血管时,反射信号就为换能器所接受,就可以根据反射波与发射的频率差异求出血流速度,根据反射波以频率是增大还是减小判定血流方向。为了使探头容易对准被测血管,通常采用一种板形双叠片探头。
彩色多普勒超声
补充: 多普勒效应也可以用波在介质中传播的衰减理论解释. 波在介质中传播,会出现频散现象,随距离增加,高频向低频移动.
医疗领域内B超的发展方向就是彩超,下面我们来谈谈彩超的特点:
其主要优点是:①能快速直观显示血流的二维平面分布状态。②可显示血流的运行方向。③有利于辨别动脉和静脉。④有利于识别血管病变和非血管病变。⑤有利于了解血流的性质。⑥能方便了解血流的时相和速度。⑦能可靠地发现分流和返流。⑧能对血流束的起源、宽度、长度、面积进行定量分析。
但彩超采用的相关技术是脉冲波,对检测物速度过高时,彩流颜色会发生差错,在定量分析方面明显逊色于频谱多普勤,现今彩色多普勒超声仪均具有频谱多普勒的功能,即为彩色──双功能超声。
彩色多普勒超声血流图(CDF)又称彩色多普勒超声显像(CDI),它获得的回声信息来源和频谱多普勒一致,血流的分布和方向呈二维显示,不同的速度以不同的颜色加以别。双功多普勒超声系统,即是B型超声图像显示血管的位置。多普勒测量血流,这种B型和多普勒系统的结合能更精确地定位任一特定的血管。
1.血流方向 在频谱多普勒显示中,以零基线区分血流方向。在零基线上方者示血流流向探头,零基线以下者示血流离开探头。在CDI中,以彩色编码表示血流方问,红色或黄色色谱表示血流流向探头(热色);而以蓝色或蓝绿色色谱表示血流流离探头(冷色)。
2.血管分布CDI显示血管管腔内的血流,因而属于流道型显示,它不能显示血管壁及外膜。
3.鉴别癌结节的血管种类 用CDI可对肝癌结节的血管进行分类。区分其为结节周围绕血管、给节内缘弧形血管。结节的流人血管、结节内部血管及结节流出血管等。
彩超的临床应用
(一)血管疾病
运用10MHz高频探头可发现血管内小于1mm的钙化点,对于颈动脉硬化性闭塞病有较好的诊断价值,还可利用血流探查局部放大判断管腔狭窄程度,栓子是否有脱落可能,是否产生了溃疡,预防脑栓塞的发生。
彩超对于各类动静脉瘘可谓最佳诊断方法,当探查到五彩镶嵌的环状彩谱即可确诊。
对于颈动脉体瘤、腹主要脉瘤、血管闭塞性脉管炎、慢性下肢静脉疾病(包括下肢静曲张、原发生下肢深静脉瓣功能不全、下肢深静脉回流障碍、血栓性静脉炎和静脉血栓形成)运用彩超的高清晰度、局部放大及血流频谱探查均可作出较正确的诊断。
(二)腹腔脏器
主要运用于肝脏与肾脏,但对于腹腔内良恶性病变鉴别,胆囊癌与大的息肉、慢性较重的炎症鉴别,胆总管、肝动脉的区别等疾病有一定的辅助诊断价值。
对于肝硬化彩超可从肝内各种内流速快慢、血管管腔大小、方向及侧支循环的建立作出较佳的判断。对于黑白超难区分的结节性硬化、弥漫性肝癌,可利于高频探查、血流频谱探查作出鉴别诊断。
对于肝内良恶性占位病变的鉴别,囊肿及各种动静脉瘤的鉴别诊断有较佳诊断价值,原发性肝癌与继发性肝癌也可通过内部血供情况对探查作出区分。
彩超运用于肾脏主要用于肾血管病变,如前所述肾动静脉瘘,当临床表现为间隔性、无痛性血尿查不出病因者有较强适应征。对于继发性高血压的常用病因之一──肾动脉狭窄,彩超基本可明确诊断,当探及狭窄处血流速大于150cm/s时,诊断准确性达98.6%,而敏感性则为100%。另一方面也是对肾癌、肾盂移行癌及良性肿瘤的鉴别诊断。
(三)小器官
在小器官当中,彩超较黑白超有明显诊断准确性的主要是甲状腺、乳腺、眼球,从某方面来说10MHz探头不打彩流多普勒已较普通黑白超5MHz,探头清晰很多,对甲状腺病变主要根据甲状腺内部血供情况作出诊断及鉴别诊断,其中甲亢图像最为典型,具有特异性,为一“火海征”。而单纯性甲状腺肿则与正常甲状腺血运相比无明显变化。亚急性甲状腺炎,桥本氏甲状腺炎介于两者之间,可借此区别,而通过结节及周围血流情况又可很好地区分结节性甲状腺肿、甲状腺腺瘤及甲状腺癌,所以建议甲状腺诊断不太明确,病人有一定经济承受能力者可做彩超进一步明确诊断。
乳腺彩超主要用于乳腺纤维瘤及乳腺癌鉴别诊断,而眼球主要对眼球血管病变有较佳诊断价值。
(四)前列腺及精囊
正因为直肠探查为目前诊断前列腺最佳方法,所以在此特地提出。此种方法探查时把前列腺分为移行区、中央区、周围区,另一部分前列腺纤维肌肉基质区。移行区包括尿道周围括约肌的两侧及腹部,为100%的良性前列腺增生发源地,而正常人移行区只占前列腺大小的5%。中央区为射精管周围、尖墙指向精阜,周围区则包括前列腺后部、两侧尖部,为70-80%的癌发源地,而尖部包膜簿甚至消失,形成解剖薄弱区,为癌症的常见转移通道,为前列腺活检的重点区域。通过直肠探查对各种前列腺精囊腺疾病有很好的诊断价值,当配合前列腺活检,则基本可明确诊断,而前列腺疾病,特别是前列腺癌在中国发病率均呈上升趋势,前列腺癌在欧美国家发病率甚至排在肺癌后面,为第二高发癌症,而腹部探查前列腺基本无法做出诊断,所以建议临床上多运用直肠B超来诊断前列腺疾病能用直肠探查就不用腹部探查。
(五)妇产科
彩超对妇产科主要优点在于良恶性肿瘤鉴别及脐带疾病、胎儿先心病及胎盘功能的评估,对于滋养细胞疾病有较佳的辅助诊断价值,对不孕症、盆腔静脉曲张通过血流频谱观察,也可作出黑白超难下的诊断。运用阴道探头较腹部探查又具有一定的优势,它的优越性主要体现在①对子宫动脉、卵巢血流敏感性、显示率高。②缩短检查时间、获得准确的多普勒频谱。③无需充盈膀胱。④不受体型肥胖、腹部疤痕、肠腔充气等干扰。⑤借助探头顶端的活动寻找盆腔脏器触痛部位判断盆腔有无粘连。 2014年3月8日马航MH370失联,17天后,马来西亚总理纳吉布24日晚临时召开新闻发布会宣布:“根据最新数据,MH370航班在印度洋南部终结。”参与失联航班调查的国际海事卫星组织副总裁麦克洛克林解释说,他们运用多普勒效应理论,结合其他参考因素,在大量数据分析基础上给出了MH370的最终走向。

❿ 经颅多普勒检查具体怎么

经颅多普勒用医学探头经颅骨的聂窗、枕窗、眼窗探测颅内血管有无狭窄、闭塞等情况,一种检测方法,对脑血管疾病的诊断有较大的参考依据。
多普勒检查安全可靠方便灵活,没有什么禁忌,积极配合检查就好。

阅读全文

与组织多普勒测量方法图相关的资料

热点内容
哪些激励方法可以激励员工 浏览:336
达尔文作用什么方法得出进化论 浏览:632
鼓楼区干货离心机操作方法有哪些 浏览:393
30公分最佳找点方法视频 浏览:285
球圆度的测量方法 浏览:910
机动车牌正确安装方法 浏览:418
防盗门的安装方法 浏览:508
剪映的学习方法在剪映哪里 浏览:724
快速制作葡萄酒的方法步骤 浏览:438
ipad连接pencil方法 浏览:903
鸟笼制作方法视频 浏览:478
用什么好方法提高成绩 浏览:974
古玩铜钱鉴别方法 浏览:145
薪酬设计制作方法和步骤 浏览:503
胸大肌下束训练方法双杠 浏览:200
如何建立自强的方法有哪些 浏览:688
大众天线安装方法 浏览:52
社会学研究方法pps 浏览:849
路亚钩绑方法图片 浏览:890
测量水的方法和工具 浏览:35