A. 乘法算式 竖式有哪些
乘法算式竖式如下图:
乘法竖式算法:
1、一个乘数与另一个乘数的个位和个位要对齐,十位数要跟十位数对齐。
2、先用一个乘数的个位分别与另一个乘数的每一位数相乘。
3、在用一个乘数的十位分别与另一个乘数的每一位数相乘,乘得结果的个位要与前面结果的十位对齐。依次类推。
4、然后把乘得的结果相加就得到乘法算式的结果了。
关于乘法的计算方法
1、使用铅笔和纸张乘数的常用方法需要一个小数字(通常为0到9的任意两个数字)的存储或查询产品的乘法表,但是一种农民乘法算法的方法不是。
2、将数字乘以多于几位小数位是繁琐而且容易出错的。发明了通用对数以简化这种计算。幻灯片规则允许数字快速乘以大约三个准确度的地方。从二十世纪初开始,机械计算器,如Marchant,自动倍增多达10位数。现代电子计算机和计算器大大减少了用手倍增的需要。
B. 数学乘法计算方法有哪些
小学数学简便算法六大方法归类:提去公因式(实际上是运用了乘法分配律)借来借去;折分法;加法结合律;拆分法和乘法分配律结合;利用基准数。
C. 乘法法则都有哪些
乘法的计算法则:
1、多位数乘法法则整数乘法低位起,几位数乘法几次积。
个位数乘得若干一,积的末位对个位。
十位数乘得若干十,积的末位对十位。
百位数乘得若干百,积的末位对百位计算准确对好位,几次乘积加一起。
2、因数末尾有0的乘法法则因数末尾若有0,写在后面先不乘,乘完积补上0,有几个0写几个0。
乘法的计算法则:
数位对齐,从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐。
凡是被乘数的各位数遇到7、8、9时,其方法为:
是9:本位减补数-次,下位加补数一次。
被乘数是8:本位减补数一次,下位加补数二次。
是7:本位减补数一次,下位加补数三次。
例如:987x879=867573(879的补数是121)算序:被乘数个位7的本位减121,下位加363得98-6153。被乘数-+位8的本位减121,下位加242得9-76473。被乘数百位9的本位减121,下位加121得867573(积)。
D. 小学乘法公式有哪些
乘法:
因数x因数=积
积÷一个因数=另一个因数
乘法的交换律:两个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。a×b=b×a
乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。a×b×c=a×(b×c)
计算方法
使用铅笔和纸张乘数的常用方法需要一个小数字(通常为0到9的任意两个数字)的存储或查询产品的乘法表,但是一种农民乘法算法的方法不是。
将数字乘以多于几位小数位是繁琐而且容易出错的。发明了通用对数以简化这种计算。幻灯片规则允许数字快速乘以大约三个准确度的地方。从二十世纪初开始,机械计算器,如Marchant,自动倍增多达10位数。现代电子计算机和计算器大大减少了用手倍增的需要。
E. 乘法的计算方法是什么
乘法的计算方法的话,一般来说可以通过竖式计算进行计算,它的计算方法的话,也有分配律和结合律这些。
F. 乘法简便运算技巧
乘法简便运算方法
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
例1 计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
例2 计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
例3 计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
例4 计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
例5 计算:16×25×25
因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
G. 数学乘法简便计算方法技巧有哪些
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
示例:
计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
示例:
计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
示例:
计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
示例:
计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
数学乘法运算定律
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1、乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成“·”。
2、乘法结合律:(ab)c=a(bc)
3、乘法分配律:(a+b)c=ac+bc
H. 乘法公式有哪些
1、a2-b2=(a+b)(a-b)
2、a2+2ab+b2=(a+b)2
3、a2-2ab+b2=(a-b)2
4、a3+b3=(a+b)(a2-ab+b2)
5、a3-b3=(a-b)(a2+ab+b2)
6、a3+3a2b+3ab2+b3=(a+b)3
7、a3-3a2b+3ab2-b3=(a-b)3
8、a2+b2+c2+2ab+2bc+2ca=(a+b+c)2
I. 乘法的计算方法是什么
确定被乘数(位数长的)、乘数(位数的),列出竖式。
以999×91为例子进行分析。
999为三位数,91为两位数所以999在上,当作被乘数,91在下,当成乘数。
乘数个位开始依次乘以被乘数各个位数。
乘数十位开始依次乘以被乘数各个位数。
结果。
J. 乘法巧算有哪些方法
十几乘以十几是头乘头、尾相加、尾相乘。比如12×13=156。而到了二十几乘以二十n 几,则任意两位数乘以任意两位数,其方法是头乘头、尾乘尾、头乘以后面的尾,尾乘以后 面的头,两个得数相加再补加个0。比如:24×25它用2×2=44×5=202×4=82×5= 1010+8=18然后补0也就是180(实际是24×25=420+180=600)
2
/10
不信你试试看!:)
3
/10
一、十位数是1的两位数相乘
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:15×17
15 + 7 = 22
5 × 7 = 35
---------------
255
即15×17 = 255
解释:
15×17
=15 ×(10 + 7)
=15 × 10 + 15 × 7
=150 + (10 + 5)× 7
=150 + 70 + 5 × 7
=(150 + 70)+(5 × 7)
为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。两位数乘法的巧算技巧
例:17 × 19
17 + 9 = 26
7 × 9 = 63
连在一起就是255,即260 + 63 = 323
4
/10
二、个位是1的两位数相乘
方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
例:51 × 31
50 × 30 = 1500
50 + 30 = 80
------------------
1580
因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。两位数乘法的巧算技巧
例:81 × 91
80 × 90 = 7200
80 + 90 = 170
------------------
7370
1
------------------
7371
原理大家自己理解就可以了。两位数乘法的巧算技巧
5
/10
三、十位相同个位不同的两位数相乘
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
例:43 × 46
(43 + 6)× 40 = 1960
3 × 6 = 18
----------------------
1978
例:89 × 87
(89 + 7)× 80 = 7680
9 × 7 = 63
----------------------
7743
6
/10
四、首位相同,两尾数和等于10的两位数相乘两位数乘法的巧算技巧
十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。