1. 六年级上册分数简便运算方法
常用的七种简便运算方法
1方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
2方法二:结合律法
(一)加括号法
1. 在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法 1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)
3方法三:乘法分配律法
1.分配法 括号里是加或减运算,与另一个数相乘,注意分配
2.提取公因式 注意相同因数的提取。
3.注意构造,让算式满足乘法分配律的条件。
4方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
5方法四:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
6方法五:巧变除为乘
除以一个数等于乘以这个数的倒数。
7方法六:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。 遇到裂项的计算题时,需注意: 1.连续性 2.等差性 计算方法:头减尾。除公差。
希望能够帮到您,谢谢,望采纳。
2. 分数简便运算公式
分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:
① 乘法交换律
② 乘法结合律
③ 乘法分配律
做题时,要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。
分数简便运算常见题型
第一种:连乘——乘法交换律的应用
涉及定律:乘法交换律
基本方法:将分数相乘的因数互相交换,先行运算。
第二种:乘法分配律的应用
涉及定律:乘法分配律
基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
第三种:乘法分配律的逆运算
涉及定律:乘法分配律逆向定律
基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。
第四种:添加因数“1”
涉及定律:乘法分配律逆向运算
基本方法:添加因数“1”,将其中一个数n转化为1×n的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。
第五种:数字化加式或减式
涉及定律:乘法分配律逆向运算
基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。
注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化。例如:999可化为1000-1。其结果与原数字保持一致。
第六种:带分数化加式
涉及定律:乘法分配律
基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算。
第七种:乘法交换律与乘法分配律相结合
涉及定律:乘法交换律、乘法分配律逆向运算
基本方法:将各项的分子与分子(或分母与分母)互换,通过变换得出公有因数,按照乘法分配律逆向运算进行计算。
注意:只有相乘的两组分数才能分子和分子互换,分母和分母互换。不能分子和分母互换,也不能出现一组中的其中一个分子(或分母)和另一组乘式中的分子(或分母)进行互换。
3. 分数乘法简便运算方法
数乘法的简便运算是分子和分母约分约去它们的公约数之后再后再进行乘法运算,分母之积作积的分母分子之基坐骑的分子
4. 分数简便运算是什么
分数简便运算是用简便方法计算分数的加减乘除。
例如:
11分之5乘20分之1+11分之3乘2分之1+11分之5乘5分之1
=1/11x1/4+1/11x3/2+1/11x1
=1/11x(1/4+3/2+1)
=1/11x(1/4+6/4+1)
=1/11x11/4
=1/4
分数的乘除法:
1、分数乘整数,分母不变,分子乘整数,最后能约分的要约分。
2、分数乘分数,用分子乘分子,用分母乘分母,最后能约分的要约分。
3、分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后能约分的要约分。
4、分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,最后能约分的要约分。
5、分数除以分数,等于被除数乘除数的倒数,最后能约分的要约分。
5. 分数简便运算方法
1,合并同类项就可以化简
就是乘法分配率倒过来用
3/4×5/7-3/4×1/7
=3/4×(5/7-1/7)
=3/4×4/7
=3/7
2,乘法结合率
7/8×3/11×5/7
=7/8×5/7×3/11
=5/8×3/11
=15/88
3,乘法结合率
11/19×2/7×5/11
=11/19×5/11×2/7
=5/19×2/7
=10/133
6. 分数简便运算技巧
对于分数的运算,除了掌握常规的运算法则外,还应该掌握一些特殊的运算技巧,才能提高运算速度解答较难的问题。
分数运算的技巧主要表现在两方面:
1,所有的整数、小数计算技巧全都可以在分数的巧算上加以应用,例如乘法的运算定律、提取公因式、字母替换等常用方法。
2,分数简算中独有的方法,包括分数裂项、整体约分法等。
通过改变分数式中的先后顺序,使运算算简便。在比较分数与小数大小时,要先统一他们的表现形式。将分数转化为小数或者将小数转化为分数。只有表现形式统一了,才有可能比较大小。分数化成小数的方法:用分子除以分母所得的商即可,除不尽时通常保留三位小数。
与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数...从而使运算得到简化。
在相同数字较多的分数式中,用字母表示式子中的一部分,使运算更加方便。这就是分数式中的代数法。
一组分数混合运算时,为了能够“凑整”或凑成比较简单的数,常常需要先把分数中分子或分母进行拆分,再来进行分组运算。这种巧算方法叫“拆分法”,也叫“分解分组法”。
当几个乘积相加减,而这些乘积中又有相同的因数时,我们可以采用提取公因数的方法进行巧算。如果乘积中另外几个因数相加减的结果正好凑成整十、整百、整千、整万的数,或是是一些比较简单的数,那么计算就更为简便。这种方法叫“提取公因数法”。
7. 分数简便计算的窍门和技巧
分数计算是小学计算部分的重要部分,也是小升初竞赛的常考内容。对于分数的运算,除了掌握常规的运算法则外,还应该掌握一些特殊的运算技巧,才能提高运算速度,解答较难的问题。今天小升汇总了分数巧算的五大方法,一起来学习吧!
”
分数运算的技巧主要表现在两方面:一是,所有的整数、小数计算技巧全都可以在分数的巧算上加以应用,例如乘法的运算定律、提取公因式、字母替换等常用方法;二是,分数简算中独有的方法,包括分数裂项、整体约分法等。
凑整法
与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数...从而使运算得到简化。
改顺序
通过改变分数式中的先后顺序,使运算算简便。常见有以下几种方法:
01加括号性质
在一个只有加减法运算的算式中,给算式的一部分添上括号,如果括号前面是加号,那么括号里面的运算符号都不改变;如果括号前面是减号,那么括号里面的运算符号都要改变,即加号变减号,减号变加号。用字母表示:
a+b-c=a+(b-c)
a-b+c=a-(b-c)
a-b-c=a-(b+c)
02去括号性质
在一个有括号的加减法运算的算式中,将算式中的括号去掉,如果括号前面是加号,那么去掉括号后,括号里面的运算符号都不改变;如果括号前面是减号,那么括号里面的运算符号都要改变,即加号变减号,减号变加号。用字母表示:
a+(b-c)=a+b-c
a-(b+c)=a-b-c
a-(b-c)=a-b+c
03分数搬家
在连减或加减混合运算中,如果算式中没有括号,那么计算时,可以带着符号“搬家”,用“字母”表示:
a-b-c=a-c-b
a-b+c=a+c-b
提取公因式
当几个乘积相加减,而这些乘积中又有相同的因数时,我们可以采用提取公因数的方法进行巧算。如果乘积中另外几个因数相加减的结果正好凑成整十、整百、整千、整万的数,或是是一些比较简单的数,那么计算就更为简便。这种方法叫“提取公因数法”。
01简单提取法
02创造条件法
对于复杂的分数算式,要根据算式特点,进行一定的转化,创造条件后再运用提取公因数的方法来简算。
拆数
一组分数混合运算时,为了能够“凑整”或凑成比较简单的数,常常需要先把分数中分子或分母进行拆分,再来进行分组运算。这种巧算方法叫“拆分法”,也叫“分解分组法”。
代数法
在相同数字较多的分数式中,用字母表示式子中的一部分,使运算更加方便。这就是分数式中的代数法。
易错点纠正
“孩子做分数运算题目,有几个容易犯的错误,家长要注意纠正:
🔼 异分母分数相加减:要先通分,化成相同的分母,再加减,计算结果能约分的要约分。
🔼在计算过程中要注意统一分数单位。
🔼 在比较分数与小数大小时,要先统一他们的表现形式。将分数转化为小数或者将小数转化为分数。只有表现形式统一了,才有可能比较大小。分数化成小数的方法:用分子除以分母所得的商即可,除不尽时通常保留三位小数。
8. 分数乘法简便计算方法和技巧
分数乘法的计算方法:
一、数字分数相乘:1、两分数或多个分数相乘时,先看是否有公约数,如果有先约分(直到约成最简分数为止。2、再分子乘以分子,分母乘以分母。3、如果能约分的继续约分,直到约成最简分数为止。
二、字母分数相乘:与数字分数相乘的法则一样,不同的是分数的分子和分母有多项式时要进行合并同类项,分解因式。通分、约去公因式,化成最简分数。然后再分子乘分子,分母乘分母。
9. 六年级数学上册分数的简便运算方法
(80-9.8)×5分之2-1.32
=70.2X2/5-1.32
=28.08-1.32
=26.76
8×7分之4÷[1÷(3.2-2.95)]
=8×4/7÷[1÷0.25]
=8×4/7÷4
=8/7
10.65-7.17-2.83+9.35
=(10.65+9.35)-(7.17-2.83)
=20-10
=10
4.48÷{(4.3-3.6)×0.8}
=4.48÷(0.7×0.8)
=4.48÷0.56
=8
7/12÷{3/4×(1/3+1/4)
=7/12÷(3/4×7/12)
=7/12÷7/16
=7/12×16/7
=4/3
7/9×3/11+2/9÷11/3
=7/9×3/11+2/9×3/11
=3/11×(7/9+2/9)
=3/11×1
=3/11
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
10. 分数的简便计算方法
分数的简便计算方法和整数的简便计算方法一样。可以用加法的交换律、结合律简算;也可以用乘法的交换律、结合律和分配率进行简算。