‘壹’ 艾滋病抗体的检查方法
艾滋病病毒抗体检测
艾滋病病毒抗体检测:检测血液中的艾滋病病毒抗体是目前最常用的检测艾滋病病毒感染的实验室方法,一般要经过两个步骤:首先做初筛试验,如果为阳性,再做确认试验,确认试验阳性才可诊断为艾滋病病毒感染。
常用的方法有:
1病原检测病原检测主要指用病毒分离培养、电镜形态观察、病毒抗原检测和基因测定等方法从宿主标本中直接检测病毒或病毒基因。由于前两种方法难度大,且需要特殊设备和专业技术人员。因此仅抗原检测和RT-PCR(反转录-PCR)可用于临床诊断。
2 抗体检测血清中HIV抗体是判断HIV感染的间接指标。根据其主要的适用范围,可将现有HIV抗体检测方法分为筛检试验和确证试验。
3 确证试剂筛检实验阳性血清的确证最常用的是Western blot(WB),由于该法相对窗口期较长,灵敏度稍差,而且成本高昂,因此只适合作为确证实验。随着第三代和第四代HIV诊断试剂灵敏度的提高,WB已越来越满足不了对其作为确证实验的要求。FDA批准的另一类筛检确证试剂是-免疫荧光-试验(IFA)。IFA比WB的成本低,而且操作也相对简单,整个过程在1-1.5小时内即可结束。此法的主要缺点是需要昂贵的荧光检测仪和有经验的专业人员来观察评判结果,而且实验结果无法长期保存。现在FDA推荐在向WB不能确定的供血员发布最终结果时以IFA的阴性或阳性为准,但不作为血液合格的标准。
4筛检试验筛检试验主要用于对供血员进行筛查,因此要求操作简便,成本低廉,而且灵敏、特异。目前世界上主要的筛检方法仍然是ELISA,还有少数的颗粒凝集试剂和快速ELISA试剂。ELISA有很高的灵敏度和特异性,操作简单,仅需要实验室配备酶标仪和洗板机即可应用,特别适合于试验室大规模筛检使用。颗粒凝集实验是另一种操作简单方便,成本低廉的检测方法,该方法结果可通过肉眼判定,灵敏度很高,特别适合发展中国家或大量筛选供血员时使用,缺点是必须使用新鲜样品,特异性较差。80年代后期发展起来的斑点印迹检测(Dot-blot assay)是一种快速ELISA(Rapid ELISA)方法,这种方法操作极为简便,过程短暂,整个过程多数在5-10分钟内甚至3分钟内即可结束,但该法比ELISA和颗粒凝集试剂昂贵得多。金免疫测定是以胶体金为标记物,以硝酸纤维素膜为载体的固相免疫测定,分为渗滤和层析两种形式。用于HIV抗体检体金试纸条属于金免疫层析,且大多数为间接法及双抗原夹心法,两种方法各有优缺点,但都简单而快速,数分钟即可得出结论,不需仪器设备,操作人员不需特殊训练,试剂稳定,适用于单份测定等。
(1)放射免疫分析法(radioimmunoassay,RIA)。RIA技术是使用以放射性同位素(如125I、32P、3H等)作标记的抗原或抗体,用γ-射线探测仪或液体闪烁计数器测定γ-射线或β-射线的放射性强度,来测定抗体或抗原量的技术。它包括以标记抗原为特点的放射免疫分析和以标记抗体为特点的免疫放射分析(immunoradiometricassay,IRMA)。前者以液相竞争结合法居多,既测大分子抗原又测小分子抗原;后者以固相法测大分子抗原为主。
RIA在早期建立的农药免疫分析方法中占了很大比重,建立了狄氏剂、艾氏剂、2,4-D和2,4,5-T、对硫磷和百草枯等农药的放射免疫分析法。尽管该方法灵敏度非常敏锐(RIA通常为10-9g、10-12g,甚至10-15g),应用范围广,但进行RIA需使用昂贵的计数器,也存在放射线辐射和污染等问题,因此在农药残留检测领域的应用和发展受到了一定的限制,并逐步为其他免疫分析方法所取代。
(2)酶免疫分析法(enzymeimmunoassay,EIA)。EIA是继RIA之后发展起来的一项免疫分析技术。其检测原理与放射免疫法类似,但所用的标记物为酶,它将抗原、抗体的特异性免疫反应和酶的高效催化作用有机结合起来,通过测定结合于固相的酶的活力来测定被测定物的量。用做标记物的酶有辣根过氧化物酶(horseradishperoxidase,HRP)和碱性磷酸酶(alkalinephosphatase,AKP)、葡萄糖氧化酶(glucoseoxidase,GO)、脲酶(urease)等。酶标记反应的固相支持物有聚苯乙烯塑料管、膜等。目前大多数采用96孔酶标板(MTP)作为固相支持物。这种板的检测容量大,样本数量多,只需有台简单的酶标仪就可得出准确的检测数据。也有学者采用磁珠作为固相材料进行EIA研究,其原理是将高分子材料(聚苯乙烯、聚氯乙烯等)包裹到金属小颗粒(Fe2O3,Fe3O4)外面,再通过化学方法键合上氨基(-NH2)、羧基(-COOH)、羟基(-OH)等活性基团,再与抗体或抗原耦联,制成免疫性微珠。该方法的优点是微珠比表面积大,吸附能力强,能悬浮在液相中快速均匀的捕获样品中的待测物,通过外加磁场后能够实现微珠与样品液的快速分离,从而减少检测时间、提高检测灵敏度。
由于酶标试剂制备容易、稳定、价廉,酶免疫分析的灵敏度接近放射免疫技术,故近年来EIA技术发展很快,已开发了多种EIA方法。其中酶联免疫法(,ELISA)是目前农药残留检测中应用最广泛的酶免疫分析技术。
(3)荧光免疫分析法(fluorescenceimmunoassay,FIA)。FIA检测的基本原理是将抗原抗体的高度特异性与荧光的敏感可测性有机地结合,以荧光物质作为示踪剂标记抗体、抗原或半抗原分子,制备高质量的特异性荧光试剂。当抗原抗体结合物中的荧光物质受到紫外光或蓝光照射时,能够吸收光能进入激发态。当其从激发态回复基态时,能以电磁辐射形式放射出所吸收的光能,产生荧光。绘制农药浓度-荧光强度曲线,可以定性、定量检测样品中的农药残留量。
适用于抗体、抗原或半抗原分子标记的荧光素须符合要求:①应具有能与蛋白质分子形成稳定共价键的化学基团,或易转变成这类反应形式而不破坏其荧光结构;②标记后,荧光素与抗体或抗原各自的化学结构和性质均不发生改变;③荧光效率高,与蛋白质结合的需要量很少;④荧光素与蛋白质结合的过程简单、快速,游离的荧光素及其降解产物容易除去;⑤结合物在一般储存条件下性能稳定,可保存使用较长时间。
(4)化学发光免疫分析法(luminescentimmunoassay,LCIA)。LCIA又可分为化学发光免疫测定(chemiluminescentimmunoassay,CLCIA)和生物发光免疫测定(bio-luminescentImmunoassay,BLCIA)。
1976年,Shroeder首先用生物素(B)-亲和素(A)系统建立了均相化学发光免疫测定技术,尔后Halman和Velan又将其引伸到非均相体系,现已渗入到生物学研究的各个领域。其原理是以发光指示抗原与抗体的结合,当发光标记物与相应的抗体或抗原结合后,底物与酶作用,或与发光剂产生氧化还原反应,或使荧光物质(例如红荧烯等)激发,释放光能。最后用光度计测定其发光强度,进行定量分析。常用发光标记物有辣根过氧化物酶(HRP)、鲁米诺(luminol)、异鲁米诺(isoluminol)、咯粉碱(lophine)、光泽精(lucigen)、双(2、4、6-三氯苯)草酸酯、联苯三酚和6[N-(4-二氨基丁基)-N-乙基]-氨基-2,3-二氢吩嗪-1,4-二酮(ABEI)等。用上述发光标记物标记的抗体(或抗原)在一定的pH缓冲溶液中与相应的抗原(或抗体)结合时,在协同因子(例如H2O2等)的作用下发光,其发光强度与被测物的浓度成正比,故可以用于定量分析。
发光免疫测定具有特异性强、灵敏度高(检测限量达10-15mol/L)、快速(1~3h)、发光材料易得等优点。但其发光过程和强度常受到发光物质本身的化学结构、介质的pH、协同发光物质和金属离子杂质等影响。
(5)金免疫层析分析法(goldimmuno-chromatographyassay,GICA)。GICA检测原理是将配体(抗体或抗原)以线状包被固化于硝酸纤维素膜等微孔薄膜上,胶体金标记另以配体或其他物质并以干态固定在吸水材料上,通过毛细作用,使样品溶液在层析条上泳动,当泳动至胶体金标记物处时,如样品中含有待检受体,则发生第一步高度特异性的免疫反应,形成的免疫复合物继续泳动至线状包被区时,发生第二步高度特异性的免疫反应,形成的免疫复合物被截留在包被的线状区,通过标记的胶体金而显红色条带(检测带),而游离的标记物则越过检测带,与结合的标记物自动分离。通过检测带上颜色的有无或色泽深浅来实现定性或定量测定2。
2金标试纸条检测
GICA法具有快速(5~20min)、廉价、结果明确、无需复杂操作技巧和特殊设备、携带方便等优点。但相对于其他免疫分析方法,该方法检测灵敏度稍低,主要适合现场快速定性或半定量测定。目前该方法已被应用于医学和生物学等众多研究领域,尤其在发达国家已经得到了广泛的应用。
(6)免疫分析与仪器分析技术的联用技术。使用单一的IA技术进行农药残留分析获得的信息量少,而理化分析方法的选择性又比较差。Kramer等人将免疫分析法和液相色谱法(LC)联合起来使用,从而简化了分析方法,提高了检测效率。LC-IA的联用,将LC的高分离能力和IA的高灵敏性和高特异性融为一体。该分析法尤其适合多组分残留分析和微量分析。免疫分析与气相色谱/质谱(GC/MS)的联用可减少结构相似的农药或代谢产物分析中的交叉反应,以降低假阳性。
‘叁’ 自身抗体的检测方法有哪些
1、抗核抗体检测
抗核抗体是一组将自身真核细胞的各种细胞核成分作为靶抗原的自身抗体的总称,主要是IgG,其次是IgM和IgA,无器官和种属特异性。ANA在大多数自身免疫性疾病中均可呈阳性,正常老年人也可有低滴度的ANA。ANA检测在临床自身免疫病诊断与鉴别诊断中是一个重要的筛查试验。
2、类风湿因子
类风湿因子是变性lgG刺激机体产生的一种自身抗体,主要存在于类风湿关节炎患者的血清和关节液内。主要为lgM型,也有lgG、lgA、lgD和IgE型。
3、抗中性粒细胞胞浆抗体
抗中性粒细胞胞浆抗体是指与中性粒细胞及单核细胞胞浆成分发生反应的抗体。当中性粒细胞受抗原刺激后,胞浆中的α-颗粒释放蛋白酶-3、髓过氧化物酶等物质,刺激机体而产生ANCA。
自身抗体的产生原因:
人体的生长、发育和生存有完整的自身免疫耐受机制的维持,正常的免疫反应有保护性防御作用,即对自身组织、成分不发生反应。—旦自身耐受的完整性遭到破坏,则机体视自身组织、成分为“异物”,而发生自身免疫反应,产生自身抗体。
正常人体血液中可以有低滴度的自身抗体,但不会发生疾病,但如果自身抗体的滴度超过某—水平,就可能对身体产生损伤,诱发疾病。自身免疫性疾病中有许多自身抗体,其中最重要的是抗核抗体。
‘肆’ 血清中禽流感抗体含量的检测方法
禽流感是由A型流感病毒引起的一种高度接触性传染性疾病。给世界养禽业造成了巨大的经济损失。禽流感病毒可分为不同的亚型,世界各地的禽流感主要由高致病性的H5和H7两种亚型引起,而人对其中的H1和H3亚型易感。快速诊断禽流感病毒具有重大意义。目前禽流感的实验室检测是比较快速、准确的方法。随着血清学实验技术和生物工程技术的飞速发展,禽流感诊断技术的研究也不断取得新进展。琼脂扩散试验、血凝和血凝抑制试验等常规方法的使用虽有一定的优势,但免疫荧光法和ELASA也日益显示出其快捷准确的特点:分子生物学的发展为核酸序列分析法的建立创造了条件,也使PCR,RT-PCR及核酸探针等检测技术成为可能。这篇文章就是对有关该病的诊断方法加以总结,并提出了认为比较可行的改进方法,旨在方便对禽流感做出及时而有效的诊断并采取相应措施。
1. 病毒的分离鉴定
无菌采集病料经处理后接种9-11日龄鸡胚,收取尿囊液测定血凝活性。若为阴性则应继续盲传2-3代。对具有血凝活性的尿囊液需先用新城疫(ND)抗血清做血凝抑制(HI)试验!以排除ND感染。然后用免疫扩散等方法来检测特异核心抗原,核糖蛋白(NP)或基质蛋白(MP),再用血凝抑制试验和神经氨酸酶抑制试验鉴定A型流感病毒亚型。分离鉴定的同时进行致病力试验,确定毒力强弱。但是流感病毒“O”相毒株不凝集鸡红细胞,故近来在流感病毒鉴定中常用豚鼠或人红细胞来代替。然而,该两种细胞无细胞核,沉积慢,一般在红细胞凝集及凝集抑制测定中需60分钟才能观察结果,同时在“U”型孔板中,很难沉积成像眼泪样的点即当中常有小空[1]。
病毒的分离鉴定对禽流感的诊断比较确实,但操作程序繁琐、费用多、耗时费力。
2. 血清学诊断技术
2.1 琼脂扩散(AGP)试验
进行病毒抗原型特异性鉴定即用已知阳性血清和末知抗原进行AGP试验。
受检样品是具有血凝素活性的鸡胚尿囊液。AGP是用来检测A型流感病毒群特异性血清抗体,即抗核糖蛋白(RNP)和基质蛋白(MP)抗体,因而适用于鉴定流感病毒 。1979年Beard首次将AGP用于禽流感抗体检测[2]。
此法虽简单易行,但是敏感性较差,易出现假阳性。AGP最常用的是免疫双扩散,赵增连、陈海燕等分别开展了禽流感病毒快速定型双扩散法的研究,不仅提高了其敏感度,且快速省时,在此方法基础上建立的AGP诊断技术及其诊断试剂盒,在全国范围内得到推广应用,并取得良好的效果。
2.2 血凝(HA)和血凝抑制试验(HI)
一般情况下,新分离毒株要先鉴定出特异性NP或.MP抗原型(用AGP)确定禽流感病毒,再做HA亚型的鉴定[3]。
现已有人采用改进HA试验方法,称为HA加敏法。该法测抗体效价比常规性高2-4倍,若抗原用乙醚裂解其敏感性比常规法高4-6倍,但观察时以30min内为好,否则易出现假阳性。另外,还应注意在HI试验时,应先除去特异性凝集反应。许多禽类血清都含有非特异性因子,能和红细胞表面受体竞争性地作用于病毒表面的血凝素而发生非特异性凝集反应。通常用受体破坏酶(RED)即霍乱菌培养液处理法或高碘酸钠法制备血清[4]。
HA、HI 特异性好,是亚型鉴定的常用方法,但其操作过程繁琐费时,并且由于用已知HA亚型的抗血清不能检出新的HA亚型的禽流感病毒,所以用该方法鉴定不如琼脂扩散实验简便和快捷。
2.3 神经氨酸酶抑制试验(NIT)
根据A 型流感病毒的表面抗原特性,特别是血凝素(HA)和神经氨酸酶(NA)特性,不仅可通过HI试验对病毒进行坚定,而且可通过NI试验进行鉴定。1983 R.A.Van.Densen介绍了NI试验的一种改进法-平板微量NI试验,此法虽不能提供常量法的定量,但却是A型流感病毒的病毒分类和抗体检测的快捷方法, 试验证明微量NI试验能对分离物做出准确鉴定而常量NI试验检测亚型混合物似更敏感[5]。
目前国家兽医实验所已将微量NI试验列为流感病毒分离物定型及筛选畜禽血清9型NA抗体的常规方法,诊断中也已广泛采用此法特别是美国在80年代火鸡发生流感病毒期间,每次流行所得的血清样本用微量NI试验所作出的A型流感病毒亚型鉴定结果已为病毒分离、疫苗接种和流行病学资料所证实。这种方法已被证明是快速的且成本较低和有可重复性。这种技术的可靠性将导致NI试验的广泛应用。
2.4 中和试验(NT)
病毒中和实验技术是反映机体抵抗特定病毒感染能力的最可靠方法。流感病毒中和实验技术有以下优点:(1)由于中和抗体作用于流感病毒表面血凝素蛋白(HA),使流感病毒失去感染能力,因此,流感病毒中和实验主要用于检测血清中的特异性抗血凝素蛋白抗体。(2)流感病毒中和实验既能检测病毒株的功能性变化,又能反映机体的抗病毒水平。(3)该方法主要使用感染性病毒,不需要进行病毒或病毒蛋白的纯化,因此,可以被迅速用于检测新病毒或人群免疫状态[6]。
以中和试验(NT)来鉴定或滴定流感病毒时常用鸡胚或组织培养细胞,操作方法与其他病毒(如NDV)的中和试验相同。病毒中和实验技术是一个相当复杂的过程,参与中和反应的因素有病毒、抗血清和宿主细胞。这些因素的变化都会影响中和实验的结果。因此,对中和实验的整个过程进行严格的质量控制。每次测定必须设立阳性和阴性血清对照,阳性和阴性细胞对照,以及对病毒使用剂量进行滴定。
NT试验是最敏感而特异的血清学方法,只有抗体与病毒颗粒上的表面抗原相对应,特别是与吸咐到宿主细胞上的病毒表面抗原相对应,才能在实验中取得满意的显示效果。 因此,某一个血清型的中和试验抗体只与同组内地其他病原表现出有限的交叉反应。病毒中和试验操作繁琐耗时费料,临床上几乎不用。但作为经典方法在病毒鉴定中起着重要作用,许多新的检测方都要与之为标准进行比较[7]。
2.5免疫荧光技术(IFT)
免疫荧光技术就是荧光抗体技术(FAT)。 IFT早在1961年就开始用于人类流感的快速诊断。1984年滨西法尼亚州爆发禽流感时,Skeeles将IFT首次用于AIV的检测。IFT最早用于病毒的鉴定和定位病毒感染细胞中特异性抗原。主要是核内荧光:用MP抗原的荧光抗体主要出现胞质荧光,核内也有部分荧光[8]。
用于禽流感病毒的诊断常用直接荧光抗体法即在组织触片上直接染色,以荧光显微镜检查荧光 。一种AIV的荧光抗体可用来检测不同亚型的其他病毒。
IFT用于诊断具有快速、简便、敏感性好的特点,而且费用较低,其敏感度同病毒的分离鉴定相当,有时高于用鸡胚进行的病毒分离。但是需要注意的是如何避免和降低标本中出现的假阳性(非特异性荧光)问题。
对一株杂交瘤细胞分泌的流感病毒的单克隆抗体进行检测时,发现间接固相免疫荧光技术的敏感性比HI 高40-150倍。间接免疫荧光技术也可以用来检测核蛋白(NP)基质蛋的(MP)抗原与抗体的反应,其敏感性很高。但对抗原制备要求较高,需用非离子型去污剂对纯化的病毒粒子进行裂解[9]。
2.6 酶联免疫吸附法(ELISA)
ELISA的基本原理是:酶结合物与相应抗体或抗原特异性结合,再遇酶底物时,在酶的强烈催化下使原来无色的底物产生化学反应,即形成有色的产物,便可用肉眼或分光光度计定量检测其含量。该方法具有特异性、敏感性、快速性和简易性等优点。在流感病毒微量中和实验中,酶结合物(HRP标记的羊抗鼠IgG抗体)与存在于MDCK细胞膜上的病毒核蛋白抗原-核蛋白单克隆抗体复合物结合,HRP酶催化OPD,使无色底物形成橙黄色化合物,再由ELISA检测仪测定吸光度值,从而获得中和抗体滴度[11]。
1974年Jenning等首先用ELISA对注射流感病毒所产生的抗体消长规律进行了检测。Lanbre认为ELISA的敏感性远高于HI补给结合反应 。Meulemans(1987)对ELISA、AGP、HI检测AIV抗体进行了比较研究。发现AGP和ELISA一样均能检测型特异性抗原(抗体),但敏感性远低于ELISA,HI适用于亚型的检测,其敏感性不如ELISA。1993 年Shodihall用混合纤维素脂膜或硝酸纤维素膜代替微量反应板,建立了快速诊断的DAS-ELISA大大缩短了诊断时间,并可保留ELISA的特异性、敏感性,其结果又不需要特殊仪器分析、可用肉眼判定。
随着分子生物技术的发展,中国农业科学院哈尔滨兽研所的李海燕等用表达禽流感病毒核蛋白的杆状病毒感染S9昆虫细胞,以其表达产物制备抗原,建立了以杆状病毒系统表达的AIV核蛋白为抗原的禽流感间接(重组核蛋白)ELISA诊断技术(rNP-ELISA)确定了其最适工作条件,并对3138份鸡血清进行了检测。实验证明rNP-ELISA与全病毒间接ELISA(AIV-ELISA),AGP及HI的符合率分别为99.9%、97.8%、98.8%,并能100%检出AGP阳性及疑似HI阳性的血清样品。 这证明了rNP-ELISA是检测A型禽流感病毒血清特异性抗体的一种特异、敏感、微量、快捷、经济的血清学诊断技术[11]。
ELISA方法的敏感性和特异性与抗原的纯度直接相关 。1984年Abraham等报道了抗原快速提纯法,所需时间比常规法缩短10倍,并且研究结果表明应用提纯抗原几乎全部排除了假阳性反应。
目前美国Kiregard Reery和Labortories有试剂盒出售。ELISA成为AI流行病学普查及早期快速诊的最有效和最实用的方法。
3 分子生物学技术
近年来,随着现代生物技术的发展,分子生物技术已被大量应用于禽流感的快速诊断。
3.1聚合酶链反应(PCR)及反转录---聚合酶链反应(RT—PCR)
PCR是近来发展成熟起来的一种体外基因扩增技术,能在数小时内使DNA呈指数增加。已成功地用于多种病毒的基因检测和分子流行病学调查等其检测原理为:寻找传染性因子的特异DNA序列。对待测样品进行PCR扩增, 如果检测出了相应的扩增带,则判为阳性反应;反之,无扩增带则为阴性反应。
鉴于引起致病的禽流感病毒多是H5和H9血清亚型,在PCR技术的基础上,崔尚金等(1998)建立了一种直接检测禽粪样和鸡胚尿囊液中AIV—H9亚型RNA的RT-PCR反应,并将此法与AGP和电镜技术作了比较,结果表明引物的特异性决定了产物的特异性,并且该方法灵敏度高,检测过程仅需8h左右,并且大大缩短了感染后的检出时间。
应用毛细管PCR(15min30个循环)代替常规PCR(2.5个小时30个循环)以进一步缩短检测时间的研究也已展开并进入更深入的领域,以期用于不同样品(组织、组织液、分泌液、粪便等)的检测,区分高致病力毒株和低致病力毒株与非致病力毒株,从而深入探讨该方法在AIV的临床早期诊断,流行病学调查及发病机制中的应用价值,为我国制定AIV的综合防制措施做出贡献[12]。
3.2 核酸探针技术/核酸分子杂交技术
这项技术是目前生物化学和分子生物学研究应用最广泛的技术之一,是定性和定量检测特异DNA或RNA的有力工具。
核酸探针技术的原理,在进行杂交时,用一种预先分离纯化的已知DNA或RNA序列片段去检测末知的核酸样品,对作检测用的已知DNA或RNA序列片段加以标记的片段就称为核酸探针。作为核酸探针的DNA或RNA是各种病原微生物基因的一部分。 在变性分开的待检DNA或RNA单链中加入与其有互补作用的核酸探针。探针在一定条件下就能与原来变性分开的DNA或RNA单链上的互补区段形成氢键,从而结合成杂交双链,通过洗涤,除去未杂交上的标记物,然后进行放射自显影,即可确定原待检样品有无与探针互补的DNA或RNA序列。
Bashiruddin等(1991)报道了扩增HA基因来分析致病毒株与非致病毒株的差异,证实了致病毒株与非致病毒株氨基酸的差异,显示了本方法的应用前景[13]。
3.3荧光PCR法
利用生物学手段,用荧光PCR方法快速检测禽流感病毒的方法已在北京通过专家鉴定,这一研究成果不仅在国内属于首次,而且在国际上也属于先进水平。它与国际标准方法鸡胚病毒分离相比,不仅无需做鸡胚病毒分离培养,而且时间也由原来最短的21d缩短为4h。
4 电镜技术
由于流感病毒为正粘病毒,属于形态特征性强的病毒,因而可用电镜技术来诊断。为提高禽流感的检出率,除样品制备技术外,取病料的部位和时间也是获得准确检验结果的关键。病料的采集部位及取材时间应根据禽流感病毒在动物体内分布特征及其感染特性而定[15]。
5 流感实验室检测中应注意的若干问题(高致病性流感病毒)
(1)禁止在同一实验室,更不应在同一接种柜中,同时处理接种未知临床标本、已知阳性标本
(2)禁止在同一实验室,同一时间处理,接种采自不同动物的标本;动物标本(如禽、猪等)必须与人的标本分别保存。
(3)接种后剩余原始标本,尤其分离出病毒的标本需暂时冻存,有条件的应置-70℃或以下保存,以便需要时可进行复查,待分离物经国家流感中心鉴定完后方可处理掉。分离阴性的标本应随时弃之。
(4)严禁实验室交叉污染:在病毒分离时严禁设阳性对照及操作在人群中已消失的流感病毒。
(5)向国家流感中心送毒株时,量至少需5 ml,同时需自己保存一些,以便寄送过程发生意外时可继续补送。
(6)流感病毒在-20℃~-40℃ 时不稳定,故不宜在此温度下长期保存。
(7)鸡胚中分离出的流感病毒,应尽量别在MDCK细胞上传代。因当今国内所用的MDCK细胞属肿瘤细胞系,一旦病毒通过它传代就无法用于疫苗制备。
(8)寄送毒株时一定需附上送检表。寄送毒株需及时,尤其鉴定不出的,异常的毒株应尽快向国家流感中心寄送。寄送时用快速直送国家流感中心[16]。
总结
使用常规方法检测禽流感及其抗体仍是目前世界上普遍接受的方法。这些方法包括病毒的分离、琼脂扩散实验鉴定病毒和测定特异性的血清抗体,血细胞凝集及其抑制试验鉴定病毒或血清抗体亚型。 采用鸡胚中和试验来鉴定病毒或血清抗体亚型也是一种可以接受的方法,但相对血凝抑制试验较为麻烦。随着科学技术的发展,检测该病毒和血清的方法出现了免疫光法和ELISA法,这些方都有快捷的特点,特别是日益完善并趋向成熟的ELISA检测方法,因其简捷、敏感、特异性强等优点而越来越得到广泛的重视和应用。随着分子生物学的发展,核酸序列分析法越来越可能成为一种更准确可行的方法,特别是它能从分子生物学的发展,核酸序列分析法越来越可能成为一种更准确可行的方法,特别是它能从分子水平揭示HPAIV甚至潜在HPAIV毒株。这种方法虽然在一般实验室还不能应用,但RT-PCR技术为从基因水平检测禽流感病毒RNA提供了灵敏、特异和快捷准确的方法。正在进行的应用毛细管PCR代替常规PCR,以进一步缩短检测时间的研究和根据禽流感NP的高度保守性而建立的rNP-ELISA检测法,不仅具有与AGP、HI同样的特异性,而且具有更高的灵敏性,可在微克水平上进行检测!都是很有前途的方法。将rNP-ELISA检测技术及其成套的成品试剂组装成诊断试剂盒,也取得了很好的实验效果。
在以上各种检测方法及科学技术发展的基础上,将PCR技术与ELISA技术结合起来,建立一种新的实验室检测AIV的方法,将有较大的研究价值其实。其实验原理(以此类方法中最简单的双引物双标记法为例)如下:
PCR的一对引物中!其中一种引物用生物素标记,另一种引物用地高辛标记,酶标微孔板上用生物素的亲和素包被(生物素的亲和素与生物素特异的结合)。PCR扩增后纯化片段加入微孔板中。此时,微孔板上包被的生物素亲和素将与引物上的生物素结合而捕捉了PCR片段,再在微孔板中加入辣根过氧化物酶标记的抗地高辛抗体,该抗体将与另一引物上的地高辛结合,从而形成生物素亲和素-生物素-PCR片段地-高辛-抗地高辛-酶的复合物。加入酶的相应底物进行显色,便可判断PCR扩增的有无。由于该方法是PCR技术和ELISA技术的结合,所以它是一种两级放大系统,即PCR放大和ELISA放大。故而它的灵敏度更高,同时这种方法避免了PCR产物分析时的电极及染色过程,所以更为快捷、简便、灵敏。
‘伍’ 血站是用什么方法检测HIV抗体的
HIV-抗体检测方法
常见检测方法
目前作为诊断手段使用的检测主要包括抗HIV病毒抗体检测、病毒培养、核酸检测和抗原检测。其中对病毒抗体的检测是最常规使用的方法,这不但是由于这类检测特异性、敏感性较高,方法相对简便、成熟,更重要的原因是HIV抗体在病毒感染后除早期短暂的”窗口期”外的整个生命期间长期稳定地存在并可被检测到。在一些特殊情况下,当抗体检测无法满足HIV感染诊断的需要时,病毒分离及测定、核酸检测、抗原检测可作为辅助手段使用,这包括对非典型血清学反应样品的诊断、HIV感染的窗口期诊断、新生儿早期诊断和对特殊样品的诊断。 一、 酶联免疫吸附试验(ELISA)
目前应用的ELISA法有8种之多。它们的特异性和敏感性超过99%。
二、 颗粒凝集法(PA)
PA为快速、简便的一种筛选方法。如属阳性,应经WB证实。PA不需任何特殊仪器,其结果用肉眼可判别。全过程仅需5分钟。缺点有假阳性,且价格昂贵。
三、快速试剂
(一)人类免疫缺陷病毒(HIV)1+2型抗体诊断试剂(胶体硒法)
雅培人类免疫缺陷病毒抗体诊断试剂(胶体硒法)是用于体外,肉眼观察,定性的免疫分析,检测血清或血浆中的HIV-1和HIV-2抗体,用于帮助受感染个体的HIV-1和HIV-2抗体。本品仅用于无偿献血员现场初筛及临床紧急情况的使用,本品检测阳性者,需进行进一步筛查确认。
(二)InstantCHEKTM-HIVl+2金标快速诊断试剂
InstantCHEKTM-HIV1+2是一种快速、简单、灵敏的检验方法, 用以检测艾滋病病毒(HIV-1和HIV-2)的抗体。该方法适用于初筛检测,凡由该试剂测定为阳性者,需用另一种方法检测如ELISA或用蛋白印记法确定。
四、HIV-抗体确认实验
免疫印迹试验(WB)、条带免疫试验(LIATEK HIVⅢ)、放射免疫沉淀试验(RIPA)及免疫荧光试验(IFA)。国内常用的确认试验方法是WB。
(一_免疫印迹实验(westernblot,WB)是广泛用于许多传染病诊断的实验方法,就HIV的病原学诊断而言,它是首选的用以确认HIV抗体的确认实验方法,WB的检测结果常常被作为鉴别其他检验方法优劣的“金标准”。
确认试验流程:
有HIV-1/2混合型和单一的HIV-1或HIV-2型。先用HIV-1/2混合型试剂进行检测,如果呈阴性反应,则报告HIV抗体阴性;如果呈阳性反应,则报告HIV-1抗体阳性;如果不满足阳性标准,则判为HIV抗体检测结果不确定。如果出现HIV-2型的特异性指示条带,需用HIV-2型免疫印迹试剂再做HIV-2的抗体确认试验,呈阴性反应,报告HIV-2抗体阴性;呈阳性反应则报告HIV-2抗体血清学阳性,并将样品送国家参比实验室进行核酸序列分析,
WB的敏感性一般不低于初筛实验,但它的特异性很高,这主要是基于HIV不同抗原组分的分离以及浓缩和纯化,能够检测针对不同抗原成分的抗体,因而能够用WB方法鉴别初筛实验的准确性。从WB确认试验结果看出,初筛试验尽管选择质量较好的试剂,如第三代ELISA,仍会有假阳性出现,必须通过确认试验才能得出准确结果。
(二)免疫荧光实验(IFA)
IFA法经济、简便、快速,曾被FDA推荐用于WB不确定样品的诊断。但需要昂贵的荧光显微镜,需要受过良好训练的技术人员、观察和解释结果易受主观因素的影响,结果不宜长期保存,IFA不宜在一般的实验室开展和应用。
‘陆’ 基于抗原抗体反应的免疫学检测技术有哪些
一、凝集反应:直接凝集反应(破片法、试管法)、间接凝集反应、间接凝集抑制试验(诊断抗原、诊断血清、检测标本)、协同凝集试验。
二、沉淀反应:液相沉淀试验、琼脂扩散试验(双向免疫扩散、单向免疫扩散、对流免疫电泳、火箭电泳、免疫电泳)
三、补体参与的反应:溶菌反应、溶血反应、补体结合反应
四:中和试验:病毒中和试验、毒素中和试验
五:免疫标记技术:免疫荧光法(直接荧光法、间接荧光法、补体法)、酶免疫测定(酶联免疫吸附试验分为间接法、双抗体夹心法、酶联免疫斑点试验。生物素——亲和素发)放射免疫测定、化学发光免疫测定、免疫印迹法、免疫金技术、免疫比浊
‘柒’ 免疫学检验常用技术有哪些
以下是几种常用的免疫学技术:
1.免疫荧光技术
免疫荧光技术是利用荧光素标记的抗体(或抗原)检测组织、细胞或血清 中的相应抗原(或抗体)的方法。由于荧光抗体具有安全、灵敏的特点,因此已 广泛应用在免疫荧光检测和流式细胞计数领域。根据荧光素标记的方式不同,可 分为直标荧光抗体和间标荧光抗体。间标荧光抗体中一抗并不直接连接荧光素, 而是先将一抗结合到蛋白,然后带有荧光素的二抗再结合至一抗。通过二抗的结 合,能将信号进行放大,因此能在一定程度上提高检测的灵敏度,但是随之带来 的高背景也降低了检测的特异性。近年来,随着荧光素和荧光检测技术的不断进 步,荧光检测的灵敏度已经接近同位素检测的水平,直接标记的荧光抗体逐渐取 代间接标记抗体。这些标记了荧光素的抗体直接结合至抗原,大大提高了检测的 特异性,使检测的结果更加准确可靠。荧光检测技术的发展,使得免疫荧光技术 在传染病诊断上有广泛的用途,如在细菌、病毒、螺旋体感染的疾病,检查IgM 抗体,做为近期接触抗原的标志。利用单克隆荧光直接标记抗体鉴定淋巴细胞的 亚类。通过流式细胞仪,针对细胞表面不同抗原,可以同时使用多种不同的荧光 抗体,对同一细胞进行多标记染色。
2.放射免疫检测
放射免疫检测技术是目前灵敏度最高的检测技术,利用放射性同素标记抗 原(或抗体),与相应抗体(或抗原)结合后,通过测定抗原抗体结合物的放射 性检测结果。放射性同位素具有pg 级的灵敏度,且利用反复曝光的方法可对痕 量物质进行定量检测。但放射性同位素对人体的损伤也限制了该方法的使用。
3.酶联免疫吸附试验(ELISA)
酶联免疫检测是目前应用最广泛的免疫检测方法。该方法是将二抗标记上 酶,抗原抗体反应的特异性与酶催化底物的作用结合起来,根据酶作用底物后的 显色颜色变化来判断试验结果,其敏感度可达ng 水平。常见用于标记的酶有辣 根过氧化物酶(HRP)、碱性磷酸酶(AP)等。由于酶联免疫法无需特殊的仪器, 检测简单,因此被广泛应用于疾病检测。常用的方法有间接法、夹心法以及BAS -ELISA。间接法是先将待测的蛋白抱被在孔板内,然后依次加入一抗、标记了 酶的二抗和底物显色,通过仪器(例如酶标仪)定量检测抗原。这种方法操作简 单但由于高背景而特异性较差。目前已逐渐被夹心法取代。夹心法利用二种一抗 对目标抗原进行捕获和固定,在确保灵敏度的同时大大提高了反应的特异性。近 年来,抗原的定量检测技术也不断推陈出新。近年来,在夹心法ELISA 的基础上, 开发了多抗原检测试剂盒,能同时检测微量液相样本中多个抗原含量。这项技术 的应用大大缩短了诊断的时间,提高诊断的可靠性和及时性。
4.免疫金胶体技术
胶体金技术经过30 多年的发展到现在已日趋成熟,该方法是将二抗标记上 胶体金颗粒,利用抗原抗体间的特异性反应,最终将胶体金标记的二抗吸附于渗 滤膜上,此方法简单,快速,广泛应用于临床筛查。
‘捌’ 免疫学的检测方法
免疫学检测方法可分为体液免疫和细胞免疫。
‘玖’ 传染病监测的技术方法都有哪些
一、病原学检查
1、病原体的直接检出:许多传染病可通过显微镜或肉眼检出病原体而明确诊断,如从血液或骨髓涂片中检出疟原虫、利什曼原虫、微丝蚴、回归热螺旋体等;从大便涂片中检出各种寄生虫卵及阿米巴原虫等;从脑脊液离心沉淀的墨汁涂片中检出新型隐球菌等;肉眼观察粪便中的绦虫节片和从粪便孵出的血吸虫毛蚴等。
2、病原体分离:细菌、螺旋体和真菌可用人工培养基分离培养,如伤寒杆菌、志贺杆菌、霍乱弧菌、钩端螺旋体和新型隐球菌等。立克次体需经动物接种或细胞培养才能分离出来,如斑疹伤寒、恙虫病等。病毒分离一般需细胞培养,如登革热、脊髓灰质炎等。用以分离病原体的检材可采用血液、尿、便、脑脊液、痰、脊髓和皮疹吸出液。
3、特异性抗原检测:可较快地提供病原体存在的证据,其诊断意义较抗体检测更为可靠。常用方法有凝集试验、酶联免疫吸附试验(ELISA)、酶免疫测定(EIA)、荧光抗体技术(FAT)、放射免疫测定(RIA )、流式细胞检测(FCM)等,必要时可作核酸定量检测、基因芯片技术检查。
4、特异性核酸检测:可用分子生物学检测方法,如放射性核素或生物素标记的探针作DNA印迹法或RNA印迹法,或用聚合酶链反应(PCR)或反转录PCR(RT-PCR)检测病原体的核酸。必要时还可作原位聚合酶链反应(PCR)。
二、特异性抗体检测
在传染病的早期,特异性抗体在血清中往往尚未出现或滴度很低,而在恢复期或后期抗体滴度有显着升高,故在急性期及恢复期双份血清检测其抗体由阴性转为阳性或滴度升高4倍以上有重要诊断意义。特异性IGM抗体的检出有助于现存或近期感染的诊断。蛋白印迹法(WB)(又称免疫印迹法)的特异性和灵敏度都很高。常用于艾滋病的确定性诊断。