导航:首页 > 解决方法 > 勾股定理最简单的讲解方法

勾股定理最简单的讲解方法

发布时间:2022-06-03 09:18:54

A. 勾股定理简单算法

a的平方+b的平方=c的平方
例如:三角形abc a=3 b=4 ∠c=90°求c的长度
在三角形abc中
a=3 b=4 ∠c=90°
由勾股定理得
∵a²+b²=c²
∴3²+4²=25=5²
∴c=5

B. 勾股定理的五种解题方法(大吐血50分)

证法一:

C. 谁能简单通俗易懂的说明什么是勾股定理

直角三角形两直角边的平方和等于斜边的平方。

D. 怎样简单介绍(勾股定理)

命题1:如果直角三角形的两直角边分别为a,b,斜边为c.那么a的平方+b的平方=c的平方。而且经过证明确认是正确的命题叫做定理,我们就叫命题1为勾股定理。

E. 最简单的勾股定理的证明方法是什么

简单的勾股定理的证明方法如下:

拓展资料:

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。



参考资料:勾股定理_网络

F. 勾股定理的最简单的证明方法是什么

简单的勾股定理的证明方法如下:

拓展资料:

勾股定理的使用方法

1、确保三角形是直角三角形。 勾股定理只适用于直角三角形中,所以,在应用定理之前,你需要先确定三角形是否是直角三角形,这一点非常重要。幸好,区分直接三角形和别的三角形的方法只有一个,那就是看一个三角形中是否有一个90度的角。

2、确定变量a,b,c对应的三角形的边。在勾股定理中,a,b表示直角三角形的两条直角边,而c用来表示斜边,即直角对应的那条最长的边。所以,先给两条直角边分别标注上a,b(具体的对应关系没有要求),而斜边标注上c。

3、确定你所要求的边。使用勾股定理可以求出直角三角形的任意一条边的长度,但前提是知道另外两条边的长度。先确定哪一条边的长度是未知的——a,b或者c。

4、代入。将两条已知边的长度带入到公式a2 + b2 = c2中,其中a和b对应的是两直角边的长度,而c代表斜边长度。在上面的例子中,我们知道一条直角边和斜边的长度(3和5),然后将3和5代入到公式中,有32 + b2 = 2。

5、计算平方。首先,计算两条已知边长度的平方值。或者,你也可以先不计算出来,然后保留平方,带到式子中直接计算平方和。在上述例子中,3和5的平方分别是9和25,所以方程可以改写为9 + b2 = 25。

6、将未知变量移到等号一边。如果有必要的话,运用基本的代数操作,将未知变量移动到等号一侧,而将已知变量移动到等号的另一侧。如果你要求的是斜边长,那么就不需要再移动变量了。在上述例子中,方程式是9 + b2 = 25。两边同时减去9,等式变为b2= 16。

7、求开方。现在等式两边一边是数字,另一边是变量,然后同时求两边的平方根。在上述例子中b2 = 16,两边同时求平方根,有b = 4。因此,未知边的长度就是4。

G. 勾股定理有多少种证明方法最容易理解的方法是什么

勾股定理,在古代有勾三股四玄五,简单地说就是在直角三角形中一个直角边长是3,一个直角边长是4的话,斜边长度一定是5,利用这个原理只要知道两个边长,第三个边就可以利用公式求的,进一步还可以求出角度数,求出面积。

H. 如何理解勾股定理的概念

如果直角三角形两直角边分别为a,b,斜边为c,那么a^2; +b^2; =c^2; ; 即直角三角形两直角边的平方和等于斜边的平方。
如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是4,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)
勾股定理的来源:
毕达哥拉斯树毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

I. 数学中的勾股定理是怎么

勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。
勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达高拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”。
勾股定理指出:

直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,

设直角三角形两直角边为a和b,斜边为c,那麽
a2 + b2 = c2
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
勾股数组
满足勾股定理方程a2 + b2 = c2的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。
由于方程中含有3个未知数,故勾股数组有无数多组。
推广
如果将直角三角形的斜边看作二维平面上的向量,将两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
看完了采纳我哦~~

J. 勾股定理最简单的四种几何证明办法 图文

勾股定理最简单的四种几何证明办法:

【方法1】

(10)勾股定理最简单的讲解方法扩展阅读:

在我国数学上,早就有勾3股4弦5的说法,这是勾股定律的一个特例,勾3a,股4a,弦5a都符合勾股定律。

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长c,存在下面这个关系:a²+b²=c²

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

阅读全文

与勾股定理最简单的讲解方法相关的资料

热点内容
天麻科学种植方法 浏览:608
亚硝酸盐国标检测方法 浏览:615
交配系统的研究方法 浏览:413
高压消防水泵安装方法 浏览:467
捕兔子最佳方法 浏览:419
组合键电脑有什么记忆方法吗 浏览:366
治疗肩周炎的土方法 浏览:729
文胸正确的折叠方法 浏览:746
海姆立克法个人急救方法图片 浏览:419
appleid在哪里设置方法 浏览:338
sumifs的使用方法及实例 浏览:883
第三次复婚的最佳方法 浏览:144
明星怎么增肥方法 浏览:467
安卓home虚拟键在哪里设置方法 浏览:281
烧伤痛痒用什么方法治疗 浏览:985
碧缇福按摩仪使用方法 浏览:589
国家队排球线路专项训练方法 浏览:979
矛盾与解决方法作文 浏览:382
排列三计算方法视频 浏览:334
正宗的干条燕窝食用方法 浏览:891