導航:首頁 > 解決方法 > 函數解決線段最值的方法

函數解決線段最值的方法

發布時間:2022-07-20 09:09:28

㈠ 函數最值的求解方法

函數最值的求解:
可以對函數求導,求導後為零的點,就是極值點,此點的函數值即是最值。
如求導後求為零的點,就沒有最值。

㈡ 求函數的最值有哪些方法

函數值域最值常用的方法
1) 利用基本函數求值域法:有的函數結構並不復雜,可以通過基本函數的值域及不等式的性質直接觀察出函數的值域 例1:y=1/(2+)
2) 反函數法:用函數和它的反函數的定義域和值域的關系,可以通過求反函數的定義域而得到原函數的值域. 對形如y=(cx+d)/(ax+b) (a=!0)的函數可用此法 例2:y=(2x-1)/(2x+1) ; y=(5x-1)/(4x+2) , x屬於[-3,-1].
3) 配方法:配方法是求「二次函數類」值域的基本方法,形如F(x)=a[f2(x)+bf(x)+c]的值域問題,均使用配方法。
4) 換元法運用代數或三角代換,將所給函數化成值域容易確定的另一函數,從而給出原函數的值域,形如y=ax+b(cx+d)(1/2) (a,b,c,d均為常數,且a=!0)的函數常用此方法求解(注意1新元的取值范圍,即換元後的等價性2換元後的可操作性) 例4已知函數f(x)=2x(1/2)+(4-x)(1/2),則函數f(x)的值域_________
5) 判別式法將函數轉化為x 的二次方程F(x,y)=0,通過方程有實根,判別式>=0,從而求得函數的值域,形如 (a1,a2不同時為0)的函數的值域常用此法求解。(分子,分母沒有公因式;此時函數的定義域是全體實數)例5:;
6) 不等式法:利用基本不等式: 應用此法注意條件「一正二定三相等」例6:若函數f(x)的值域為[1/2,3],則函數F(x)=f(x)+的值域為_____
7) 數形結合法:若函數的解析式的幾何意義較明顯,諸如距離,斜率等,可用數形結合的方法。 例7:對a,bR.設max{a,b}=求函數f(x)=max{},的最小值
8) 導數法:
9) 已知函數的值域,求函數中待定字母的取值范圍 9例9:已知函數f(x)=的定義域,值域是[0,2],求m,n的值域。

函數的圖像
1:函數圖像的基本做法:1)描點法
2) 圖像變換法
3) 做圖像的一般步驟:a求出函數的定義域;b討論函數的性質(奇偶性,周期性)以及函數上的特殊點(如漸近線,對稱軸)c利用基本函數的圖像畫出所給函數的圖像
2:函數變換的四種形式:
1)平移變換左加右減
2)對稱變換 a:y=f(x)和y=f(-x); y=-f(x)和y=f(x); y=-f(-x)和y=f(x); y=和y=f(x)分別關於y軸,x軸,原點,直線y=x對稱。
b:若對定義域內的一切x均有f(x+m)=f(m-x),則y=f(x)的圖像關於x=m對稱;
c:y=f(x)與y=2b-f(2a-x)關於點(a,b)成中心對稱
3)伸縮變換:y=af(x) y=f(ax)
4)翻折變換 y= y=f()
3函數圖像的對稱性
1) f(-x)=-f(x) 圖像關於原點對稱
2) f(-x)=f(x) 圖像關於y軸對稱
3) y=和y=f(x) 圖像關於y=x對稱
4) f(a+x)=f(a-x) 圖像關於x=a對稱
5) f(a+x)=-f(a-x) 圖像關於(a,0)對稱

函數單調性
判斷函數單調性的常用方法
1) 定義法
2) 兩增(減)函數的和還增(減);增(減)函數與減(增)函數的差還是增(減)函數;
3) 減函數在對稱的兩個區間上具有相同的單調性;偶函數在對稱的兩個區間上具有相反的單調性、
4) y=f(x)在D上單調則y=f(x)在D的子區間上也單調,並且具有相同的單調性。
5) y=f(u),u=g(x)單調性相同,則y=f(g(x))是增函數;單調性相反,則y=f(g(x))是減函數(同增異減);
6) 互為反函數的兩個函數具有相同的單調性
7) 利用導數判斷函數的單調性
8) 抽象函數的單調性:做差;做商(注意分母不為零且同號)。
9) 關於函數f(x)=x+a/x(a>0)單調性及應用

例1:函數在定義域上是減函數
例2: 已知函數f(x)=+a/x在[2,+)單調增,求a的取值范圍
例3:函數f(x)=,g(x)=x(2-x)的單調區間
例4:函數f(x)對任意的 都有f(a+b)=f(a)+f(b)-1,並且當 x>0是,f(x)>1,求證f(x)是R上的增函數。
例5:某食品廠定期購買麵粉,已知該廠每天需要麵粉6噸,每噸麵粉的價格為1800元,麵粉的保管及其他費用為平均每噸每天三元,購買麵粉每次需要支付運費900元。
(1) 求該廠每隔多少天購買一次麵粉,才能使平均每天所支付的總費用最少?
(2)若提供麵粉的公司規定:當一次購買的麵粉不少於210噸時,其價格可享受9折優惠,問該廠是否考慮利用此優惠條件?說明原因。
例6:已知f(x)為R上的減函數,求滿足< f(1)的實數x的取值范圍。
例7:是否存在實數a是函數f(x)= 在[2,4]上市增函數?如果存在,說明a可取哪些值;如果不存在,請說明理由。

函數的奇偶性
1:定義:y=f(x), 定義域關於原點對稱
偶函數:f(-x)=f(x)
奇函數:f(-x)=-f(x) (原點有定義有f(0)=0)
2奇函數,偶函數的圖像的性質:
奇函數圖像關於原點對稱;
偶函數圖像關於y軸對稱。
3判斷奇偶性方法
1) 定義
2) 定義變形:f(-x)+f(x)=0()為奇函數; f(-x)-f(x)=0()為偶函數。
3) 函數奇偶性滿足下列性質:奇+奇=奇;偶+偶+偶;
奇*奇=偶;偶*偶=偶;奇*偶=奇。
4)奇函數在對稱的單調區間內有相同的單調性; 偶函數在對稱的單調區間內有相反的單調性。

周期公式:
1:若函數關於直線x=a和直線x=b對稱。則函數f(x)為周期函數,2是它的一個周期;
2:若函數關於點(a,0)和(b,0)對稱。則函數f(x)為周期函數,2是它的一個周期;
3若函數關於點(a,0)和直線x=b對稱。則函數f(x)為周期函數,4是它的一個周期;

例1:f(x)=lg()
例2:
例3:
例4:
例5:在R上定義的函數f(x)是偶函數,且f(x)=f(2-x),若f(x)在區間[1,2]是減函數,討論f(x)[-2,-1]和[3,4]上的單調性。
例6:已知f(x)是偶函數,且在[)是增函數,如果f(ax+1)f(x-2)在x[1/2,1]恆成立,求實數a的取值范圍
例7:已知 其中a,b,c,d為常數,若f(-7)=-7.求f(7).

周期公式:
1:若函數關於直線x=a和直線x=b對稱。則函數f(x)為周期函數,2是它的一個周期;
2:若函數關於點(a,0)和(b,0)對稱。則函數f(x)為周期函數,2是它的一個周期;
3若函數關於點(a,0)和直線x=b對稱。則函數f(x)為周期函數,4是它的一個周期;
求函數解析式常用方法:
(1)定義法:有已知條件f[g(x)]=F(x),可將F(x),改寫成g(x)的表達式,然後以x代替g(x), 使得f(x)的表達式常需「湊配」。
例1:f((1-x)/(1+x))=(1-x2)/(1+x2).求f(x)的解析表達式。
(2)變數代換法:有已知條件f[g(x)]=F(x),令t=g(x),然後反解出x=g-1(t).帶入F(x),即可得f(x)的表達式。
例2:f(e x-1)=2x2-1.求f(x)的解析表達式
(3)待定系數法:又是給定函數特徵求函數的解析式,可用待定系數法。例3:函數是二次函數可設為f(x)=ax2+bx+c(a不等於零)。期中a,b,c是待定系數,根據題設條件列出方程組,解出a.b.c
.例3;設二次方程f(x)滿足f(x-2)=f(-x-2)。且圖像在y軸上的截距為1,被x軸截得的線段長為2*2(1/2),求f(x)的解析式。
(4)函數方程法:將f(x)作為一個未知量來考慮,建立方程組。消去另外的未知量便得f(x)的表達式。 例4::已知f(x)-f(1/x)lnx=1,求解f(x)的表達式
(5) 參數法:引入某個參數,然後寫出用這個參數表示變數的式子(即參數方程),再消去參數就得f(x)表達式。 例5:已知 f(3sinx)=cot(2)x求f(x)的表達式
(6)賦值法:對於抽象函數f(x),如果滿足條件中對一切實屬成立。那麼對於特殊值仍然成立。我們就可以賦予特殊值。 例6:已知f(x)滿足:f(0)=1,且對任意的x,y屬於R都有f(xy+1)=f(x)f(y)-f(y)+x-2求f(x).
(7) 根據某實際問題建立一種函數關系式,這種情況須引入合適的變數,根據數學的有關知識找出函數關系式。
一次二次函數
1 一次函數
a形如y=kx+b 叫做一次函數值域R;b=0,y=kx叫做正比例函數
b一次函數的k叫做直線y=kx+b的斜率,b叫做y=kx+b的截距。
c函數圖像(性質):

1已知函數y=(2m-1)x+1-3m,求m為何值時:
這個函數為正比例函數;
(2)這個函數為奇函數
(3)函數值y隨x的增大而減小
2一次函數y=(3a-7)x+a-2的圖像與y軸的交點在x軸上方,且y隨x的增大而減小,則a的取值范圍______.
3已知函數f(x)=2mx+4,若在[-2,1]上存在,使得f()=0,求實數m的取值范圍。
4關於x的方程ax+1=|x|有兩個不同的實根,求實數a的取值范圍

2 二次函數
a形如 叫做二次函數
值域 a>0 ; a<0
b二次函數有三種形式 A: 一般式
B :頂點式
C 兩根式
c二次函數的基本概念: 1對稱軸
2頂點坐標 3零點(根)
4韋達定理 5
d 一元二次方程的判別式
e函數圖像:(性質)

1已知二次函數f(x)滿足f(2)=-1,f(-1)=-1,f(x)的最大值是8,試確定二次函數
2二次函數的頂點坐標(2,3)且經過點(3,1)求這個二次函數的解析式
3已知拋物線與x軸交與點A(-1,0),B(1,0),並經過點(0,1),求拋物線的解析式
4已知二次函數f(x),當x=2時有最大值16,他的圖像截x軸所得的線段長為8,求解析式
5二次函數的圖像如圖所示,則點P(a, )第幾象限_____
6以為自變數的二次函數,m為不小於0的整數,它的圖像與x軸交與點A和點B,A在原點的左邊,B在原點的右邊。求這個函數的解析式畫出這個二次函數的草圖
7如圖,拋物線與x軸交與A,B兩點且線段OA:OB=3:1則m=_______
8已知函數
(1) 求對一切x,f(x)的值恆為非負實數時a的取值范圍;
(2) 在(1)的條件下,求方程的根的取值范圍
9正方形CDEF的邊長為4,截取一個角得五邊形ABCDE,已知AF=2,BF=1,在AB上求一點P.使矩形PNDM有最大面積

函數的應用
1將進貨單價為8元的商品按10元一個銷售時,每天可賣100個,若這種商品價格每上漲一元,日銷售量就減少10個,為了獲得最大利潤,此商品的銷售單價應定為多少元?
2一次時裝表演會預算中票價每張100元,容納觀眾人數不超過2000元,毛利潤y(百元)關於觀眾人數x(百人)之間的函數圖像如右圖所示,當觀眾人數超過1000人時,表演會組織者需向保險公司繳納定額平安保險費5000元(不列入成本費用):
(1)當觀眾人數不超過1000人時,毛利潤y關於觀眾人數的函數解析式和成本費用 S(百元)關於觀眾人數x的函數解析式
(2)若要使這次表演會獲得36000元的毛利潤。那麼需要售出多少張門票?需付成本費多少元?

3某蔬菜基地種植西紅柿,有有歷年市場行情得知,從2月1日起的300天內,西紅柿的市場售價與上市時間的關系用下圖(1)的一條折線表示。西紅柿的種植成本與上市時間的關系用圖(2)的拋物線表示。
(1)寫出圖(1)表示的市場售價與時間的函數關系P=f(t);寫出圖(2)表示的種植成本與時間的函數關系Q= g(t);
(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?
2函數的零點
函數的零點就是方程f(x)=0的實數根,也是函數的圖像與x軸的交點的橫坐標。零點概念體現了函數和方程之間的密切聯系
勘根定理:如果函數y=f(x)在區間[a,b]上的圖像是連續不斷的一條曲線,並且有f(a)f(b)<0,那麼,函數y=f(x)在區間(a,b)內有零點,即存在,使得f(c)=0,這個c就是方程的f(x)=0 根

1函數f(x)=的零點是______
2函數的零點所在的大致區間是______
3已知函數的圖像如右圖所示,求b的取值范圍______
4方程的兩根分別在區間(2,3)(3,4)之間,求的取值范圍

5方程有一非零根,方程有一非零根,求證方程必有一根介於之間
6求證方程在(0,1)內必有一個實數根

7函數的零點大致區間在_________
8已知函數恆有零點,求a的取值范圍

9關於x的方程的一根比1大,一根比1小,求a的取值范圍

10根據函數的性質,指出函數的零點所在的大致區間
二分法:不講

A函數的性質應用
1已知定義域為R的函數是奇函數
(1)求a,b的值

1函數奇偶,單調性解決問題2脫掉f利用函數單調性3注意函數定義域的限制
(2)若對任意的不等式恆成立,求k的取值范圍

2函數f(x)( )是奇函數,且當

時是增函數,若f(1)=0,求不等
式<0的解集

B待定系數法的應用
3已知二次函數f(x)二次項系數為a且不等式f(x)>-2x的解集為(1,3)
(1) 若方程f(x)+6a=0有兩個相等的根,求f(x)的解析式
(2) 若f(x)的最大值為正數,求a的取值范圍
4已知f(x)是二次函數,且不等式f(x)<0的解集是(0,5)且f(x)在區間[-1,4]上的最大值是12,求f(x) 的解析式
C有關恆成立問題
5設,且為方程f(x)=0的兩個實根,若,不等式對任意實數恆成立,求m的值
6已知函數,
(1) 當a=,求f(x)的最小值、
(2) 若對任意恆成立,試求實數a的取值范圍
7我國是一個水資源比較缺乏的國家之一,各地採用價格控制手段來達到節約用水的目的,某市用水收費的方法是:水費=基本費+超額費+損耗費
若每月用水量不超過最低限量a(),只付基本費8元和每月定額損耗費c元:若用水量超過a()時,除了付以上的基本費和損耗費外,超過部分每立方米付b元的超額費,已知每戶每月的定額損耗費不超過5元;

㈢ 解決最值問題常用的方法

(1)從極端情況入手
我們在分析某些數學問題時,不妨考慮一下把問題推向「極端」。因為當某一問題被推向「極端」後,往往能排除許多枝節問題的干擾,使問題的「本來面目」清楚地顯露出來,從而使問題迅速獲解。
(2)枚舉比較
根據題目的要求,把可能的答案一一枚舉出來,使題目的條件逐步縮小范圍,篩選比較出題目的答案。
(3)分析推理
根據兩個事物在某些屬性上都相同,猜測它們在其他屬性上也有可能相同的推理方法。
(4)構造
在尋求解題途徑難以進展時,構造出新的式子或圖形,往往可以取得出奇制勝的效果。
(5)應用求最大值和最小值的結論
和一定的兩個數,差越小,積越大。
積一定的兩個數,差越小,和越小。
兩點之間線段最短。

㈣ 高中幾何線段最值問題

二倍根號二



㈤ 怎樣解決二次函數中線段的最值問題

先說f(x)=x²+|x-2|-1x∈R當x-2≥0,即x≥2時,函數式為f(x)=x²+x-3,此時拋物線y=x²+x-3開口向上,對稱軸方程為x=-1/2所以:當x=2時,函數有最小值,最小值為3;當x-2<0,即x<2時,函數式為f(x)=x²-x+1,此時拋物線y=x²-x+1的開口向上,對稱軸方程為x=1/2所以:當x=1/2時,函數有最小值,最小值為3/4.第二題:f(x)=-x²+(4a-2)x-4a²+4ax∈[0,2]的最值函數的對稱軸方程為x=2a-1,開口向下。當2a-1∈[0,2]時,x=2a-1時函數值最大,將其帶入可求出最大值是1,當2a-1∈(-∞,0]時,x=0時函數值最大,最大值是4a-4a²,x=2時函數值最小,當2a-1∈(2,+∞]時,x=2時函數值最大,x=0時函數值最小,分別將其帶入可求得

㈥ 求函數的最值的方法

怎樣求函數最值
一. 求函數最值常用的方法
最值問題是生產,科學研究和日常生活中常遇到的一類特殊的數學問題,是高中數學的一個重點, 它涉及到高中數學知識的各個方面, 解決這類問題往往需要綜合運用各種技能, 靈活選擇合理的解題途徑, 而教材中沒有作出系統的敘述.因此, 在數學總復習中,通過對例題, 習題的分析, 歸納出求最值問題所必須掌握的基本知識和基本處理方程.
常見的求最值方法有:
1.配方法: 形如的函數,根據二次函數的極值點或邊界點的取值確定函數的最值.
2.判別式法: 形如的分式函數, 將其化成系數含有y的關於x的二次方程.由於, 0, 求出y的最值, 此種方法易產生增根, 因而要對取得最值時對應的x值是否有解檢驗.
3.利用函數的單調性 首先明確函數的定義域和單調性, 再求最值.
4.利用均值不等式, 形如的函數, 及, 注意正,定,等的應用條件, 即: a, b均為正數, 是定值, a=b的等號是否成立.
5.換元法: 形如的函數, 令,反解出x, 代入上式, 得出關於t的函數, 注意t的定義域范圍, 再求關於t的函數的最值.
還有三角換元法, 參數換元法.
6.數形結合法 形如將式子左邊看成一個函數, 右邊看成一個函數, 在同一坐標系作出它們的圖象, 觀察其位置關系, 利用解析幾何知識求最值.
求利用直線的斜率公式求形如的最值.
7.利用導數求函數最值.
不同的函數要用不同的方法呀。你找什麼類型的?還是什麼學歷要看要用的?在補充問題里說清楚一點吧。
還有導數,是最簡單的
一. 求函數最值常用的方法
最值問題是生產,科學研究和日常生活中常遇到的一類特殊的數學問題,是高中數學的一個重點, 它涉及到高中數學知識的各個方面, 解決這類問題往往需要綜合運用各種技能, 靈活選擇合理的解題途徑, 而教材中沒有作出系統的敘述.因此, 在數學總復習中,通過對例題, 習題的分析, 歸納出求最值問題所必須掌握的基本知識和基本處理方程.
常見的求最值方法有:
1.配方法: 形如的函數,根據二次函數的極值點或邊界點的取值確定函數的最值.
2.判別式法: 形如的分式函數, 將其化成系數含有y的關於x的二次方程.由於, 0, 求出y的最值, 此種方法易產生增根, 因而要對取得最值時對應的x值是否有解檢驗.
3.利用函數的單調性 首先明確函數的定義域和單調性, 再求最值.
4.利用均值不等式, 形如的函數, 及, 注意正,定,等的應用條件, 即: a, b均為正數, 是定值, a=b的等號是否成立.
5.換元法: 形如的函數, 令,反解出x, 代入上式, 得出關於t的函數, 注意t的定義域范圍, 再求關於t的函數的最值.
還有三角換元法, 參數換元法.
6.數形結合法 形如將式子左邊看成一個函數, 右邊看成一個函數, 在同一坐標系作出它們的圖象, 觀察其位置關系, 利用解析幾何知識求最值.
求利用直線的斜率公式求形如的最值.
7.利用導數求函數最值.
有好多方法,不同函數耱最值的方法是不同的。

㈦ 求函數的最值有幾種方法

  1. 定義。

  2. 特殊函數的最值。

  3. 配方法。

  4. 不等式。

  5. 導數法。

  6. 利用圖像。

㈧ 函數最值的計算方法

就最值的方法挺多的,有定義法,圖形法、函數法、基本值域法、不等式法和求導的方法。
比如對於y=√(x^2-2x-3),由於是開平方,在定義域的范圍內,其值域是非負數,即:y>=0.所以有最小值,沒有最大值。

㈨ 請簡述函數的最值的求解方法

主要看是什麼函數:
①二次函數配方就可以。
②有些函數通過定義域就看出最值。
③通用方法求導,導數=0,可能存在最值。
④拉格朗日乘數法。

㈩ 函數的最值怎麼

常見的求最值方法有:

1、配方法: 形如的函數,根據二次函數的極值點或邊界點的取值確定函數的最值.

2、判別式法: 形如的分式函數, 將其化成系數含有y的關於x的二次方程.由於, ∴≥0, 求出y的最值, 此種方法易產生增根, 因而要對取得最值時對應的x值是否有解檢驗.

3、利用函數的單調性 首先明確函數的定義域和單調性, 再求最值.

4、利用均值不等式, 形如的函數, 及≥≤, 注意正,定,等的應用條件, 即: a, b均為正數, 是定值, a=b的等號是否成立.

5、換元法: 形如的函數, 令,反解出x, 代入上式, 得出關於t的函數, 注意t的定義域范圍, 再求關於t的函數的最值. 還有三角換元法, 參數換元法.

6、數形結合法 形如將式子左邊看成一個函數, 右邊看成一個函數, 在同一坐標系作出它們的圖象, 觀察其位置關系, 利用解析幾何知識求最值. 求利用直線的斜率公式求形如的最值.

7、利用導數求函數最值2.首先要求定義域關於原點對稱然後判斷f(x)和f(-x)的關系:若f(x)=f(-x),偶函數;若f(x)=-f(-x),奇函數。

如:函數f(x)=x^3,定義域為R,關於原點對稱;而f(-x)=(-x)^3=-x^3=-f(x),所以f(x)=x^3是奇函數.又如:函數f(x)=x^2,定義域為R,關於原點對稱;而f(-x)=(-x)^2=x^2=f(x),所以f(x)=x^3是偶函數.

閱讀全文

與函數解決線段最值的方法相關的資料

熱點內容
怎麼學習人工智慧的方法 瀏覽:572
肺不張怎麼治療方法 瀏覽:834
l型伸縮縫蓋板安裝方法 瀏覽:907
你知道關愛植物的方法有哪些嗎 瀏覽:263
正確的豐胸方法按摩手法視頻 瀏覽:914
199分之8的簡便方法計算 瀏覽:666
生豆芽的方法視頻 瀏覽:582
神經膜脫落的最佳治療方法 瀏覽:43
胃腸脹氣的治療方法 瀏覽:957
征服異界手機版在哪裡下載方法 瀏覽:276
解鎖加密在哪裡設置方法 瀏覽:80
座便池安裝方法 瀏覽:265
國醫大師治療腦中風的方法 瀏覽:611
小米手機瀏覽器在哪裡設置方法 瀏覽:108
濕疹鑒別的方法 瀏覽:358
乳房刮痧方法視頻 瀏覽:143
資本成本權重的計算方法 瀏覽:813
薄餅檔的使用方法 瀏覽:239
有電阻電壓計算方法 瀏覽:952
安裝櫃子滑道的方法 瀏覽:677